Mutual information of generalized free fields

Autores
Benedetti, Valentin; Casini, Horacio German; Martinez, Pedro Jorge
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study generalized free fields (GFF) from the point of view of information measures. We first review conformal GFF, their holographic representation, and the ambiguities in the assignation of algebras to regions that arise in these theories. Then we study the mutual information (MI) in several geometric configurations. The MI displays unusual features at the short distance limit: a leading volume term rather than an area term, and a logarithmic term in any dimensions rather than only for even dimensions as in ordinary conformal field theory's. We find the dependence of some subleading terms on the conformal dimension Δ of the GFF. We study the long distance limit of the MI for regions with boundary in the null cone. The pinching limit of these surfaces show the GFF behaves as an interacting model from the MI point of view. The pinching exponents depend on the choice of algebra. The entanglement wedge algebra choice allows these models to "fake"causality, giving results consistent with its role in the description of large N models.
Fil: Benedetti, Valentin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Martinez, Pedro Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Materia
Mutual Information
AdS/CFT
Generalized Free Fields
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/222931

id CONICETDig_374fef9ce8b175e7818e7253e140d524
oai_identifier_str oai:ri.conicet.gov.ar:11336/222931
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mutual information of generalized free fieldsBenedetti, ValentinCasini, Horacio GermanMartinez, Pedro JorgeMutual InformationAdS/CFTGeneralized Free Fieldshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study generalized free fields (GFF) from the point of view of information measures. We first review conformal GFF, their holographic representation, and the ambiguities in the assignation of algebras to regions that arise in these theories. Then we study the mutual information (MI) in several geometric configurations. The MI displays unusual features at the short distance limit: a leading volume term rather than an area term, and a logarithmic term in any dimensions rather than only for even dimensions as in ordinary conformal field theory's. We find the dependence of some subleading terms on the conformal dimension Δ of the GFF. We study the long distance limit of the MI for regions with boundary in the null cone. The pinching limit of these surfaces show the GFF behaves as an interacting model from the MI point of view. The pinching exponents depend on the choice of algebra. The entanglement wedge algebra choice allows these models to "fake"causality, giving results consistent with its role in the description of large N models.Fil: Benedetti, Valentin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Martinez, Pedro Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaAmerican Physical Society2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/222931Benedetti, Valentin; Casini, Horacio German; Martinez, Pedro Jorge; Mutual information of generalized free fields; American Physical Society; Physical Review D; 107; 4; 2-2023; 1-202470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.107.046003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:03Zoai:ri.conicet.gov.ar:11336/222931instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:03.94CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mutual information of generalized free fields
title Mutual information of generalized free fields
spellingShingle Mutual information of generalized free fields
Benedetti, Valentin
Mutual Information
AdS/CFT
Generalized Free Fields
title_short Mutual information of generalized free fields
title_full Mutual information of generalized free fields
title_fullStr Mutual information of generalized free fields
title_full_unstemmed Mutual information of generalized free fields
title_sort Mutual information of generalized free fields
dc.creator.none.fl_str_mv Benedetti, Valentin
Casini, Horacio German
Martinez, Pedro Jorge
author Benedetti, Valentin
author_facet Benedetti, Valentin
Casini, Horacio German
Martinez, Pedro Jorge
author_role author
author2 Casini, Horacio German
Martinez, Pedro Jorge
author2_role author
author
dc.subject.none.fl_str_mv Mutual Information
AdS/CFT
Generalized Free Fields
topic Mutual Information
AdS/CFT
Generalized Free Fields
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study generalized free fields (GFF) from the point of view of information measures. We first review conformal GFF, their holographic representation, and the ambiguities in the assignation of algebras to regions that arise in these theories. Then we study the mutual information (MI) in several geometric configurations. The MI displays unusual features at the short distance limit: a leading volume term rather than an area term, and a logarithmic term in any dimensions rather than only for even dimensions as in ordinary conformal field theory's. We find the dependence of some subleading terms on the conformal dimension Δ of the GFF. We study the long distance limit of the MI for regions with boundary in the null cone. The pinching limit of these surfaces show the GFF behaves as an interacting model from the MI point of view. The pinching exponents depend on the choice of algebra. The entanglement wedge algebra choice allows these models to "fake"causality, giving results consistent with its role in the description of large N models.
Fil: Benedetti, Valentin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Martinez, Pedro Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
description We study generalized free fields (GFF) from the point of view of information measures. We first review conformal GFF, their holographic representation, and the ambiguities in the assignation of algebras to regions that arise in these theories. Then we study the mutual information (MI) in several geometric configurations. The MI displays unusual features at the short distance limit: a leading volume term rather than an area term, and a logarithmic term in any dimensions rather than only for even dimensions as in ordinary conformal field theory's. We find the dependence of some subleading terms on the conformal dimension Δ of the GFF. We study the long distance limit of the MI for regions with boundary in the null cone. The pinching limit of these surfaces show the GFF behaves as an interacting model from the MI point of view. The pinching exponents depend on the choice of algebra. The entanglement wedge algebra choice allows these models to "fake"causality, giving results consistent with its role in the description of large N models.
publishDate 2023
dc.date.none.fl_str_mv 2023-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/222931
Benedetti, Valentin; Casini, Horacio German; Martinez, Pedro Jorge; Mutual information of generalized free fields; American Physical Society; Physical Review D; 107; 4; 2-2023; 1-20
2470-0010
2470-0029
CONICET Digital
CONICET
url http://hdl.handle.net/11336/222931
identifier_str_mv Benedetti, Valentin; Casini, Horacio German; Martinez, Pedro Jorge; Mutual information of generalized free fields; American Physical Society; Physical Review D; 107; 4; 2-2023; 1-20
2470-0010
2470-0029
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.107.046003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613841722277888
score 13.070432