Diseño y desarrollo de un sistema de alerta temprana para pacientes hospitalizados por COVID-19

Autores
Huespe, Ivan; Carboni Bisso, Indalecio; Gemelli, Nicolas A.; Terrasa, Sergio Adrian; Di Stefano, Sabrina; Burgos, Valeria Laura; Sinner, Jorge; Oubiña, Mailen; Bezzati, Marina; Delgado, Pablo; Las Heras, Marcos; Risk, Marcelo
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
La pandemia por COVID-19 planteó un desafío para el sistema salud, debido a la gran demanda de pacientes hospitalizados. La identificación temprana de pacientes hospitalizados con riesgo de evolución desfavorable es vital para asistir en forma oportuna y planificar la demanda de recursos. El propósito de este estudio fue identificar las variables predictivas de mala evolución en pacientes hospitalizados por COVID-19 y crear un modelo predictivo que pueda usarse como herramienta de triage. A través de una revisión narrativa, se obtuvieron 44 variables vinculadas a una evolución desfavorable de la enfermedad COVID-19, incluyendo variables clínicas, de laboratorio y radiográficas. Luego se utilizó un procesamiento por método Delphi modificado de 2 rondas para seleccionar una lista final de variables incluidas en el score llamado COVID-19 Severity Index. Luego se calculó el Área Bajo la Curva (AUC) del score para predecir el pase a terapia intensiva en las próximas 24 horas. El score presentó un AUC de 0,94 frente a 0,80 para NEWS-2. Finalmente se agregó el COVID-19 Severity Index a la historia clínica electrónica de un hospital universitario de alta complejidad. Se programó para que el mismo se actualice de manera automática, facilitando la planificación estratégica, organización y administración de recursos a través de la identificación temprana de pacientes hospitalizados con mayor riesgo de transferencia a la Unidad de Cuidados Intensivos.
Pandemics pose a major challenge for public health preparedness, requiring a coordinated international response and the development of solid containment plans. Early and accurate identifica tion of high-risk patients in the course of the current COVID-19 pandemic is vital for planning and making proper use of available resources. The purpose of this study was to identify the key variables that account for worse outcomes to create a predictive model that could be used effectively for triage. Through literature review, 44 variables that could be linked to an unfavorable course of COVID-19 disease were obtained, including clinical, laboratory, and X-ray variables. These were used for a 2-round modified Delphi processing with 14 experts to select a final list of variables with the greatest predictive power for the construction of a scoring system, leading to the creation of a new scoring system: the COVID-19 Severity Index. The analysis of the area under the curve for the COVID-19 Severity Index was 0.94 to predict the need for ICU admission in the following 24 hours against 0.80 for NEWS-2. Additionally, the digital medical record of the Hospital Italiano de Buenos Aires was electronically set for an automatic calculation and constant update of the COVID-19 Severity Index. Specifically designed for the current COVID-19 pandemic, COVID-19 Severity Index could be used as a reliable tool for strategic planning, organization, and administration of resources by easily identifying hospitalized patients with a greater need of intensive care.
Fil: Huespe, Ivan. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; Argentina
Fil: Carboni Bisso, Indalecio. Hospital Italiano; Argentina
Fil: Gemelli, Nicolas A.. Hospital Italiano; Argentina
Fil: Terrasa, Sergio Adrian. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Di Stefano, Sabrina. Hospital Italiano; Argentina
Fil: Burgos, Valeria Laura. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; Argentina
Fil: Sinner, Jorge. Hospital Italiano; Argentina
Fil: Oubiña, Mailen. Hospital Italiano; Argentina
Fil: Bezzati, Marina. Hospital Italiano; Argentina
Fil: Delgado, Pablo. Hospital Italiano; Argentina
Fil: Las Heras, Marcos. Hospital Italiano; Argentina
Fil: Risk, Marcelo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; Argentina
Materia
coronavirus
critical care
early warning score
hospital admnistration
COVID-19
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/211828

id CONICETDig_36f4caff33466814908e7d81b3a281ec
oai_identifier_str oai:ri.conicet.gov.ar:11336/211828
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Diseño y desarrollo de un sistema de alerta temprana para pacientes hospitalizados por COVID-19Huespe, IvanCarboni Bisso, IndalecioGemelli, Nicolas A.Terrasa, Sergio AdrianDi Stefano, SabrinaBurgos, Valeria LauraSinner, JorgeOubiña, MailenBezzati, MarinaDelgado, PabloLas Heras, MarcosRisk, Marcelocoronaviruscritical careearly warning scorehospital admnistrationCOVID-19https://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3La pandemia por COVID-19 planteó un desafío para el sistema salud, debido a la gran demanda de pacientes hospitalizados. La identificación temprana de pacientes hospitalizados con riesgo de evolución desfavorable es vital para asistir en forma oportuna y planificar la demanda de recursos. El propósito de este estudio fue identificar las variables predictivas de mala evolución en pacientes hospitalizados por COVID-19 y crear un modelo predictivo que pueda usarse como herramienta de triage. A través de una revisión narrativa, se obtuvieron 44 variables vinculadas a una evolución desfavorable de la enfermedad COVID-19, incluyendo variables clínicas, de laboratorio y radiográficas. Luego se utilizó un procesamiento por método Delphi modificado de 2 rondas para seleccionar una lista final de variables incluidas en el score llamado COVID-19 Severity Index. Luego se calculó el Área Bajo la Curva (AUC) del score para predecir el pase a terapia intensiva en las próximas 24 horas. El score presentó un AUC de 0,94 frente a 0,80 para NEWS-2. Finalmente se agregó el COVID-19 Severity Index a la historia clínica electrónica de un hospital universitario de alta complejidad. Se programó para que el mismo se actualice de manera automática, facilitando la planificación estratégica, organización y administración de recursos a través de la identificación temprana de pacientes hospitalizados con mayor riesgo de transferencia a la Unidad de Cuidados Intensivos.Pandemics pose a major challenge for public health preparedness, requiring a coordinated international response and the development of solid containment plans. Early and accurate identifica tion of high-risk patients in the course of the current COVID-19 pandemic is vital for planning and making proper use of available resources. The purpose of this study was to identify the key variables that account for worse outcomes to create a predictive model that could be used effectively for triage. Through literature review, 44 variables that could be linked to an unfavorable course of COVID-19 disease were obtained, including clinical, laboratory, and X-ray variables. These were used for a 2-round modified Delphi processing with 14 experts to select a final list of variables with the greatest predictive power for the construction of a scoring system, leading to the creation of a new scoring system: the COVID-19 Severity Index. The analysis of the area under the curve for the COVID-19 Severity Index was 0.94 to predict the need for ICU admission in the following 24 hours against 0.80 for NEWS-2. Additionally, the digital medical record of the Hospital Italiano de Buenos Aires was electronically set for an automatic calculation and constant update of the COVID-19 Severity Index. Specifically designed for the current COVID-19 pandemic, COVID-19 Severity Index could be used as a reliable tool for strategic planning, organization, and administration of resources by easily identifying hospitalized patients with a greater need of intensive care.Fil: Huespe, Ivan. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; ArgentinaFil: Carboni Bisso, Indalecio. Hospital Italiano; ArgentinaFil: Gemelli, Nicolas A.. Hospital Italiano; ArgentinaFil: Terrasa, Sergio Adrian. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Di Stefano, Sabrina. Hospital Italiano; ArgentinaFil: Burgos, Valeria Laura. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; ArgentinaFil: Sinner, Jorge. Hospital Italiano; ArgentinaFil: Oubiña, Mailen. Hospital Italiano; ArgentinaFil: Bezzati, Marina. Hospital Italiano; ArgentinaFil: Delgado, Pablo. Hospital Italiano; ArgentinaFil: Las Heras, Marcos. Hospital Italiano; ArgentinaFil: Risk, Marcelo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; ArgentinaMedicina (Buenos Aires)2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/211828Huespe, Ivan; Carboni Bisso, Indalecio; Gemelli, Nicolas A.; Terrasa, Sergio Adrian; Di Stefano, Sabrina; et al.; Diseño y desarrollo de un sistema de alerta temprana para pacientes hospitalizados por COVID-19; Medicina (Buenos Aires); Medicina (Buenos Aires); 81; 4; 8-2021; 1-190025-7680CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0025-76802021000400508info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:53:32Zoai:ri.conicet.gov.ar:11336/211828instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:53:32.538CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Diseño y desarrollo de un sistema de alerta temprana para pacientes hospitalizados por COVID-19
title Diseño y desarrollo de un sistema de alerta temprana para pacientes hospitalizados por COVID-19
spellingShingle Diseño y desarrollo de un sistema de alerta temprana para pacientes hospitalizados por COVID-19
Huespe, Ivan
coronavirus
critical care
early warning score
hospital admnistration
COVID-19
title_short Diseño y desarrollo de un sistema de alerta temprana para pacientes hospitalizados por COVID-19
title_full Diseño y desarrollo de un sistema de alerta temprana para pacientes hospitalizados por COVID-19
title_fullStr Diseño y desarrollo de un sistema de alerta temprana para pacientes hospitalizados por COVID-19
title_full_unstemmed Diseño y desarrollo de un sistema de alerta temprana para pacientes hospitalizados por COVID-19
title_sort Diseño y desarrollo de un sistema de alerta temprana para pacientes hospitalizados por COVID-19
dc.creator.none.fl_str_mv Huespe, Ivan
Carboni Bisso, Indalecio
Gemelli, Nicolas A.
Terrasa, Sergio Adrian
Di Stefano, Sabrina
Burgos, Valeria Laura
Sinner, Jorge
Oubiña, Mailen
Bezzati, Marina
Delgado, Pablo
Las Heras, Marcos
Risk, Marcelo
author Huespe, Ivan
author_facet Huespe, Ivan
Carboni Bisso, Indalecio
Gemelli, Nicolas A.
Terrasa, Sergio Adrian
Di Stefano, Sabrina
Burgos, Valeria Laura
Sinner, Jorge
Oubiña, Mailen
Bezzati, Marina
Delgado, Pablo
Las Heras, Marcos
Risk, Marcelo
author_role author
author2 Carboni Bisso, Indalecio
Gemelli, Nicolas A.
Terrasa, Sergio Adrian
Di Stefano, Sabrina
Burgos, Valeria Laura
Sinner, Jorge
Oubiña, Mailen
Bezzati, Marina
Delgado, Pablo
Las Heras, Marcos
Risk, Marcelo
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv coronavirus
critical care
early warning score
hospital admnistration
COVID-19
topic coronavirus
critical care
early warning score
hospital admnistration
COVID-19
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.2
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv La pandemia por COVID-19 planteó un desafío para el sistema salud, debido a la gran demanda de pacientes hospitalizados. La identificación temprana de pacientes hospitalizados con riesgo de evolución desfavorable es vital para asistir en forma oportuna y planificar la demanda de recursos. El propósito de este estudio fue identificar las variables predictivas de mala evolución en pacientes hospitalizados por COVID-19 y crear un modelo predictivo que pueda usarse como herramienta de triage. A través de una revisión narrativa, se obtuvieron 44 variables vinculadas a una evolución desfavorable de la enfermedad COVID-19, incluyendo variables clínicas, de laboratorio y radiográficas. Luego se utilizó un procesamiento por método Delphi modificado de 2 rondas para seleccionar una lista final de variables incluidas en el score llamado COVID-19 Severity Index. Luego se calculó el Área Bajo la Curva (AUC) del score para predecir el pase a terapia intensiva en las próximas 24 horas. El score presentó un AUC de 0,94 frente a 0,80 para NEWS-2. Finalmente se agregó el COVID-19 Severity Index a la historia clínica electrónica de un hospital universitario de alta complejidad. Se programó para que el mismo se actualice de manera automática, facilitando la planificación estratégica, organización y administración de recursos a través de la identificación temprana de pacientes hospitalizados con mayor riesgo de transferencia a la Unidad de Cuidados Intensivos.
Pandemics pose a major challenge for public health preparedness, requiring a coordinated international response and the development of solid containment plans. Early and accurate identifica tion of high-risk patients in the course of the current COVID-19 pandemic is vital for planning and making proper use of available resources. The purpose of this study was to identify the key variables that account for worse outcomes to create a predictive model that could be used effectively for triage. Through literature review, 44 variables that could be linked to an unfavorable course of COVID-19 disease were obtained, including clinical, laboratory, and X-ray variables. These were used for a 2-round modified Delphi processing with 14 experts to select a final list of variables with the greatest predictive power for the construction of a scoring system, leading to the creation of a new scoring system: the COVID-19 Severity Index. The analysis of the area under the curve for the COVID-19 Severity Index was 0.94 to predict the need for ICU admission in the following 24 hours against 0.80 for NEWS-2. Additionally, the digital medical record of the Hospital Italiano de Buenos Aires was electronically set for an automatic calculation and constant update of the COVID-19 Severity Index. Specifically designed for the current COVID-19 pandemic, COVID-19 Severity Index could be used as a reliable tool for strategic planning, organization, and administration of resources by easily identifying hospitalized patients with a greater need of intensive care.
Fil: Huespe, Ivan. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; Argentina
Fil: Carboni Bisso, Indalecio. Hospital Italiano; Argentina
Fil: Gemelli, Nicolas A.. Hospital Italiano; Argentina
Fil: Terrasa, Sergio Adrian. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Di Stefano, Sabrina. Hospital Italiano; Argentina
Fil: Burgos, Valeria Laura. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; Argentina
Fil: Sinner, Jorge. Hospital Italiano; Argentina
Fil: Oubiña, Mailen. Hospital Italiano; Argentina
Fil: Bezzati, Marina. Hospital Italiano; Argentina
Fil: Delgado, Pablo. Hospital Italiano; Argentina
Fil: Las Heras, Marcos. Hospital Italiano; Argentina
Fil: Risk, Marcelo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; Argentina
description La pandemia por COVID-19 planteó un desafío para el sistema salud, debido a la gran demanda de pacientes hospitalizados. La identificación temprana de pacientes hospitalizados con riesgo de evolución desfavorable es vital para asistir en forma oportuna y planificar la demanda de recursos. El propósito de este estudio fue identificar las variables predictivas de mala evolución en pacientes hospitalizados por COVID-19 y crear un modelo predictivo que pueda usarse como herramienta de triage. A través de una revisión narrativa, se obtuvieron 44 variables vinculadas a una evolución desfavorable de la enfermedad COVID-19, incluyendo variables clínicas, de laboratorio y radiográficas. Luego se utilizó un procesamiento por método Delphi modificado de 2 rondas para seleccionar una lista final de variables incluidas en el score llamado COVID-19 Severity Index. Luego se calculó el Área Bajo la Curva (AUC) del score para predecir el pase a terapia intensiva en las próximas 24 horas. El score presentó un AUC de 0,94 frente a 0,80 para NEWS-2. Finalmente se agregó el COVID-19 Severity Index a la historia clínica electrónica de un hospital universitario de alta complejidad. Se programó para que el mismo se actualice de manera automática, facilitando la planificación estratégica, organización y administración de recursos a través de la identificación temprana de pacientes hospitalizados con mayor riesgo de transferencia a la Unidad de Cuidados Intensivos.
publishDate 2021
dc.date.none.fl_str_mv 2021-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/211828
Huespe, Ivan; Carboni Bisso, Indalecio; Gemelli, Nicolas A.; Terrasa, Sergio Adrian; Di Stefano, Sabrina; et al.; Diseño y desarrollo de un sistema de alerta temprana para pacientes hospitalizados por COVID-19; Medicina (Buenos Aires); Medicina (Buenos Aires); 81; 4; 8-2021; 1-19
0025-7680
CONICET Digital
CONICET
url http://hdl.handle.net/11336/211828
identifier_str_mv Huespe, Ivan; Carboni Bisso, Indalecio; Gemelli, Nicolas A.; Terrasa, Sergio Adrian; Di Stefano, Sabrina; et al.; Diseño y desarrollo de un sistema de alerta temprana para pacientes hospitalizados por COVID-19; Medicina (Buenos Aires); Medicina (Buenos Aires); 81; 4; 8-2021; 1-19
0025-7680
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0025-76802021000400508
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Medicina (Buenos Aires)
publisher.none.fl_str_mv Medicina (Buenos Aires)
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782230987276288
score 12.982451