Multitemporal spectral analysis for algae detection in an eutrophic lake using Sentinel 2 images
- Autores
- German, Alba; Ferral, Anabella; Scavuzzo, Carlos Matias; Shimoni, M.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Eutrophication is characterized by excessive plant and algal growth due to the increased of organic matter, carbon dioxide and nutrients in water body. Although eutrophication naturally occurs over centuries as lakes age, human activities have accelerated it processes and caused dramatic changes to the aquatic ecosystems including elevated algae blooms and risk for hypoxia as well as degradation in the quality of drinking water and fisheries. Monitoring eutrophic processes is therefore highly important to human health and to the aquatic environment. However, the spatial and seasonal distribution of the phenomena and its dynamic are difficult to be resolved using conventional methods as water sampling or sparse acquisition of remote sensing data. This research work proposes a methodology that takes advantage of the high temporal resolution of Sentinel-2 (S2) for monitoring eutrophic reservoir. Specifically, it uses large temporal series of S2 images and advanced temporal unmixing model to estimate the abundance of [Chl-a] and algae species in San Roque reservoir, Argentina, in the period August 2016 to August 2019. The spatial patterns and the temporal tendencies of these aquatic indicators, that have a direct link to Eutrophication, were analysed and evaluated using in situ data in order to assess their contribution to the local water management.
Fil: German, Alba. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Ferral, Anabella. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Scavuzzo, Carlos Matias. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Shimoni, M.. Belgian Royal Military Academy; Bélgica - Materia
-
EUTROPHICATION
PHYTOPLANKTON
SENTINEL-2
MULTITEMPORAL
UNMIXING
TURBID WATER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143886
Ver los metadatos del registro completo
id |
CONICETDig_36c5b993e4ac8ee319a118580531531d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143886 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multitemporal spectral analysis for algae detection in an eutrophic lake using Sentinel 2 imagesGerman, AlbaFerral, AnabellaScavuzzo, Carlos MatiasShimoni, M.EUTROPHICATIONPHYTOPLANKTONSENTINEL-2MULTITEMPORALUNMIXINGTURBID WATERhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Eutrophication is characterized by excessive plant and algal growth due to the increased of organic matter, carbon dioxide and nutrients in water body. Although eutrophication naturally occurs over centuries as lakes age, human activities have accelerated it processes and caused dramatic changes to the aquatic ecosystems including elevated algae blooms and risk for hypoxia as well as degradation in the quality of drinking water and fisheries. Monitoring eutrophic processes is therefore highly important to human health and to the aquatic environment. However, the spatial and seasonal distribution of the phenomena and its dynamic are difficult to be resolved using conventional methods as water sampling or sparse acquisition of remote sensing data. This research work proposes a methodology that takes advantage of the high temporal resolution of Sentinel-2 (S2) for monitoring eutrophic reservoir. Specifically, it uses large temporal series of S2 images and advanced temporal unmixing model to estimate the abundance of [Chl-a] and algae species in San Roque reservoir, Argentina, in the period August 2016 to August 2019. The spatial patterns and the temporal tendencies of these aquatic indicators, that have a direct link to Eutrophication, were analysed and evaluated using in situ data in order to assess their contribution to the local water management.Fil: German, Alba. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Ferral, Anabella. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Scavuzzo, Carlos Matias. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Shimoni, M.. Belgian Royal Military Academy; BélgicaCopernicus Publications2020-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143886German, Alba; Ferral, Anabella; Scavuzzo, Carlos Matias; Shimoni, M.; Multitemporal spectral analysis for algae detection in an eutrophic lake using Sentinel 2 images; Copernicus Publications; Isprs Journal of Photogrammetry and Remote Sensing; XLII; 11-2020; 147-1522194-90341682-1750CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3-W12-2020/147/2020/info:eu-repo/semantics/altIdentifier/doi/10.5194/isprs-archives-XLII-3-W12-2020-147-2020info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:10Zoai:ri.conicet.gov.ar:11336/143886instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:11.037CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multitemporal spectral analysis for algae detection in an eutrophic lake using Sentinel 2 images |
title |
Multitemporal spectral analysis for algae detection in an eutrophic lake using Sentinel 2 images |
spellingShingle |
Multitemporal spectral analysis for algae detection in an eutrophic lake using Sentinel 2 images German, Alba EUTROPHICATION PHYTOPLANKTON SENTINEL-2 MULTITEMPORAL UNMIXING TURBID WATER |
title_short |
Multitemporal spectral analysis for algae detection in an eutrophic lake using Sentinel 2 images |
title_full |
Multitemporal spectral analysis for algae detection in an eutrophic lake using Sentinel 2 images |
title_fullStr |
Multitemporal spectral analysis for algae detection in an eutrophic lake using Sentinel 2 images |
title_full_unstemmed |
Multitemporal spectral analysis for algae detection in an eutrophic lake using Sentinel 2 images |
title_sort |
Multitemporal spectral analysis for algae detection in an eutrophic lake using Sentinel 2 images |
dc.creator.none.fl_str_mv |
German, Alba Ferral, Anabella Scavuzzo, Carlos Matias Shimoni, M. |
author |
German, Alba |
author_facet |
German, Alba Ferral, Anabella Scavuzzo, Carlos Matias Shimoni, M. |
author_role |
author |
author2 |
Ferral, Anabella Scavuzzo, Carlos Matias Shimoni, M. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
EUTROPHICATION PHYTOPLANKTON SENTINEL-2 MULTITEMPORAL UNMIXING TURBID WATER |
topic |
EUTROPHICATION PHYTOPLANKTON SENTINEL-2 MULTITEMPORAL UNMIXING TURBID WATER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Eutrophication is characterized by excessive plant and algal growth due to the increased of organic matter, carbon dioxide and nutrients in water body. Although eutrophication naturally occurs over centuries as lakes age, human activities have accelerated it processes and caused dramatic changes to the aquatic ecosystems including elevated algae blooms and risk for hypoxia as well as degradation in the quality of drinking water and fisheries. Monitoring eutrophic processes is therefore highly important to human health and to the aquatic environment. However, the spatial and seasonal distribution of the phenomena and its dynamic are difficult to be resolved using conventional methods as water sampling or sparse acquisition of remote sensing data. This research work proposes a methodology that takes advantage of the high temporal resolution of Sentinel-2 (S2) for monitoring eutrophic reservoir. Specifically, it uses large temporal series of S2 images and advanced temporal unmixing model to estimate the abundance of [Chl-a] and algae species in San Roque reservoir, Argentina, in the period August 2016 to August 2019. The spatial patterns and the temporal tendencies of these aquatic indicators, that have a direct link to Eutrophication, were analysed and evaluated using in situ data in order to assess their contribution to the local water management. Fil: German, Alba. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Ferral, Anabella. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Scavuzzo, Carlos Matias. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Shimoni, M.. Belgian Royal Military Academy; Bélgica |
description |
Eutrophication is characterized by excessive plant and algal growth due to the increased of organic matter, carbon dioxide and nutrients in water body. Although eutrophication naturally occurs over centuries as lakes age, human activities have accelerated it processes and caused dramatic changes to the aquatic ecosystems including elevated algae blooms and risk for hypoxia as well as degradation in the quality of drinking water and fisheries. Monitoring eutrophic processes is therefore highly important to human health and to the aquatic environment. However, the spatial and seasonal distribution of the phenomena and its dynamic are difficult to be resolved using conventional methods as water sampling or sparse acquisition of remote sensing data. This research work proposes a methodology that takes advantage of the high temporal resolution of Sentinel-2 (S2) for monitoring eutrophic reservoir. Specifically, it uses large temporal series of S2 images and advanced temporal unmixing model to estimate the abundance of [Chl-a] and algae species in San Roque reservoir, Argentina, in the period August 2016 to August 2019. The spatial patterns and the temporal tendencies of these aquatic indicators, that have a direct link to Eutrophication, were analysed and evaluated using in situ data in order to assess their contribution to the local water management. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143886 German, Alba; Ferral, Anabella; Scavuzzo, Carlos Matias; Shimoni, M.; Multitemporal spectral analysis for algae detection in an eutrophic lake using Sentinel 2 images; Copernicus Publications; Isprs Journal of Photogrammetry and Remote Sensing; XLII; 11-2020; 147-152 2194-9034 1682-1750 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143886 |
identifier_str_mv |
German, Alba; Ferral, Anabella; Scavuzzo, Carlos Matias; Shimoni, M.; Multitemporal spectral analysis for algae detection in an eutrophic lake using Sentinel 2 images; Copernicus Publications; Isprs Journal of Photogrammetry and Remote Sensing; XLII; 11-2020; 147-152 2194-9034 1682-1750 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3-W12-2020/147/2020/ info:eu-repo/semantics/altIdentifier/doi/10.5194/isprs-archives-XLII-3-W12-2020-147-2020 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Copernicus Publications |
publisher.none.fl_str_mv |
Copernicus Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613017570902016 |
score |
13.070432 |