Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina
- Autores
- Hoke, Gregory D.; Giambiagi, Laura Beatriz; Garzione, Carmala N.; Mahoney, J. Brian; Strecker, Manfred R.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The topographic growth of mountain ranges at convergent margins results from the complex interaction between the motion of lithospheric plates, crustal shortening, rock uplift and exhumation. Constraints on the timing and magnitude of elevation change gleaned from isotopic archives preserved in sedimentary sequences provide insight into how these processes interact over different timescales to create topography and potentially decipher the impact of topography on atmospheric circulation and superposed exhumation. This study uses stable isotope data from pedogenic carbonates collected from seven different stratigraphic sections spanning different tectonic and topographic positions in the range today, to examine the middle to late Miocene history of elevation change in the central Andes thrust belt, which is located immediately to the south of the Altiplano-Puna Plateau, the world’s second largest orogenic plateau. Paleoelevations are calculated using previously published local isotope-elevation gradients observed in modern rainfall and carbonate-formation temperatures determined from clumped isotope studies in modern soils. Calculated Neogene basin paleoelevations are between 1 km and 1.9 km for basins that today are located between 1500 and 3400 m elevation. Considering the modern elevation and δ18O values of precipitation at the sampling sites, three of the intermontane basins experienced surface uplift between the end of deposition during the late Miocene and present. The timing of elevation change cannot be linked to any documented episodes of large-magnitude crustal shortening. Paradoxically, the maximum inferred surface uplift in the core of the range is greatest where the crust is thinnest. The spatial pattern of surface uplift is best explained by eastward migration of a crustal root via ductile deformation in the lower crust and is not related to flat-slab subduction.
Fil: Hoke, Gregory D.. Syracuse University. Department of Earth Science; Estados Unidos
Fil: Giambiagi, Laura Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Fil: Garzione, Carmala N.. University of Rochester. Department of Earth and Environmental Science ; Estados Unidos
Fil: Mahoney, J. Brian. University of Rochester. Department of Earth and Environmental Science ; Estados Unidos
Fil: Strecker, Manfred R.. Universität Potsdam. Institute für Erd und Umweltwissenschaften; Alemania - Materia
-
Topographic Evolution
Topographic Uplift
Central Andes
Foreland Basins
Neogene
Andes
Surface Uplift
Tectonics
Paleoelevation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/31926
Ver los metadatos del registro completo
id |
CONICETDig_369a0ee0d9b4e3156182c706cc41a039 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/31926 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of ArgentinaHoke, Gregory D.Giambiagi, Laura BeatrizGarzione, Carmala N.Mahoney, J. BrianStrecker, Manfred R.Topographic EvolutionTopographic UpliftCentral AndesForeland BasinsNeogeneAndesSurface UpliftTectonicsPaleoelevationhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The topographic growth of mountain ranges at convergent margins results from the complex interaction between the motion of lithospheric plates, crustal shortening, rock uplift and exhumation. Constraints on the timing and magnitude of elevation change gleaned from isotopic archives preserved in sedimentary sequences provide insight into how these processes interact over different timescales to create topography and potentially decipher the impact of topography on atmospheric circulation and superposed exhumation. This study uses stable isotope data from pedogenic carbonates collected from seven different stratigraphic sections spanning different tectonic and topographic positions in the range today, to examine the middle to late Miocene history of elevation change in the central Andes thrust belt, which is located immediately to the south of the Altiplano-Puna Plateau, the world’s second largest orogenic plateau. Paleoelevations are calculated using previously published local isotope-elevation gradients observed in modern rainfall and carbonate-formation temperatures determined from clumped isotope studies in modern soils. Calculated Neogene basin paleoelevations are between 1 km and 1.9 km for basins that today are located between 1500 and 3400 m elevation. Considering the modern elevation and δ18O values of precipitation at the sampling sites, three of the intermontane basins experienced surface uplift between the end of deposition during the late Miocene and present. The timing of elevation change cannot be linked to any documented episodes of large-magnitude crustal shortening. Paradoxically, the maximum inferred surface uplift in the core of the range is greatest where the crust is thinnest. The spatial pattern of surface uplift is best explained by eastward migration of a crustal root via ductile deformation in the lower crust and is not related to flat-slab subduction.Fil: Hoke, Gregory D.. Syracuse University. Department of Earth Science; Estados UnidosFil: Giambiagi, Laura Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Garzione, Carmala N.. University of Rochester. Department of Earth and Environmental Science ; Estados UnidosFil: Mahoney, J. Brian. University of Rochester. Department of Earth and Environmental Science ; Estados UnidosFil: Strecker, Manfred R.. Universität Potsdam. Institute für Erd und Umweltwissenschaften; AlemaniaElsevier Science2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31926Strecker, Manfred R.; Mahoney, J. Brian; Garzione, Carmala N.; Giambiagi, Laura Beatriz; Hoke, Gregory D.; Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina; Elsevier Science; Earth and Planetary Science Letters; 406; 10-2014; 153-1640012-821XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0012821X1400538X?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2014.08.032info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T12:59:43Zoai:ri.conicet.gov.ar:11336/31926instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 12:59:43.919CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina |
title |
Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina |
spellingShingle |
Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina Hoke, Gregory D. Topographic Evolution Topographic Uplift Central Andes Foreland Basins Neogene Andes Surface Uplift Tectonics Paleoelevation |
title_short |
Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina |
title_full |
Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina |
title_fullStr |
Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina |
title_full_unstemmed |
Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina |
title_sort |
Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina |
dc.creator.none.fl_str_mv |
Hoke, Gregory D. Giambiagi, Laura Beatriz Garzione, Carmala N. Mahoney, J. Brian Strecker, Manfred R. |
author |
Hoke, Gregory D. |
author_facet |
Hoke, Gregory D. Giambiagi, Laura Beatriz Garzione, Carmala N. Mahoney, J. Brian Strecker, Manfred R. |
author_role |
author |
author2 |
Giambiagi, Laura Beatriz Garzione, Carmala N. Mahoney, J. Brian Strecker, Manfred R. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Topographic Evolution Topographic Uplift Central Andes Foreland Basins Neogene Andes Surface Uplift Tectonics Paleoelevation |
topic |
Topographic Evolution Topographic Uplift Central Andes Foreland Basins Neogene Andes Surface Uplift Tectonics Paleoelevation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The topographic growth of mountain ranges at convergent margins results from the complex interaction between the motion of lithospheric plates, crustal shortening, rock uplift and exhumation. Constraints on the timing and magnitude of elevation change gleaned from isotopic archives preserved in sedimentary sequences provide insight into how these processes interact over different timescales to create topography and potentially decipher the impact of topography on atmospheric circulation and superposed exhumation. This study uses stable isotope data from pedogenic carbonates collected from seven different stratigraphic sections spanning different tectonic and topographic positions in the range today, to examine the middle to late Miocene history of elevation change in the central Andes thrust belt, which is located immediately to the south of the Altiplano-Puna Plateau, the world’s second largest orogenic plateau. Paleoelevations are calculated using previously published local isotope-elevation gradients observed in modern rainfall and carbonate-formation temperatures determined from clumped isotope studies in modern soils. Calculated Neogene basin paleoelevations are between 1 km and 1.9 km for basins that today are located between 1500 and 3400 m elevation. Considering the modern elevation and δ18O values of precipitation at the sampling sites, three of the intermontane basins experienced surface uplift between the end of deposition during the late Miocene and present. The timing of elevation change cannot be linked to any documented episodes of large-magnitude crustal shortening. Paradoxically, the maximum inferred surface uplift in the core of the range is greatest where the crust is thinnest. The spatial pattern of surface uplift is best explained by eastward migration of a crustal root via ductile deformation in the lower crust and is not related to flat-slab subduction. Fil: Hoke, Gregory D.. Syracuse University. Department of Earth Science; Estados Unidos Fil: Giambiagi, Laura Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina Fil: Garzione, Carmala N.. University of Rochester. Department of Earth and Environmental Science ; Estados Unidos Fil: Mahoney, J. Brian. University of Rochester. Department of Earth and Environmental Science ; Estados Unidos Fil: Strecker, Manfred R.. Universität Potsdam. Institute für Erd und Umweltwissenschaften; Alemania |
description |
The topographic growth of mountain ranges at convergent margins results from the complex interaction between the motion of lithospheric plates, crustal shortening, rock uplift and exhumation. Constraints on the timing and magnitude of elevation change gleaned from isotopic archives preserved in sedimentary sequences provide insight into how these processes interact over different timescales to create topography and potentially decipher the impact of topography on atmospheric circulation and superposed exhumation. This study uses stable isotope data from pedogenic carbonates collected from seven different stratigraphic sections spanning different tectonic and topographic positions in the range today, to examine the middle to late Miocene history of elevation change in the central Andes thrust belt, which is located immediately to the south of the Altiplano-Puna Plateau, the world’s second largest orogenic plateau. Paleoelevations are calculated using previously published local isotope-elevation gradients observed in modern rainfall and carbonate-formation temperatures determined from clumped isotope studies in modern soils. Calculated Neogene basin paleoelevations are between 1 km and 1.9 km for basins that today are located between 1500 and 3400 m elevation. Considering the modern elevation and δ18O values of precipitation at the sampling sites, three of the intermontane basins experienced surface uplift between the end of deposition during the late Miocene and present. The timing of elevation change cannot be linked to any documented episodes of large-magnitude crustal shortening. Paradoxically, the maximum inferred surface uplift in the core of the range is greatest where the crust is thinnest. The spatial pattern of surface uplift is best explained by eastward migration of a crustal root via ductile deformation in the lower crust and is not related to flat-slab subduction. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/31926 Strecker, Manfred R.; Mahoney, J. Brian; Garzione, Carmala N.; Giambiagi, Laura Beatriz; Hoke, Gregory D.; Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina; Elsevier Science; Earth and Planetary Science Letters; 406; 10-2014; 153-164 0012-821X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/31926 |
identifier_str_mv |
Strecker, Manfred R.; Mahoney, J. Brian; Garzione, Carmala N.; Giambiagi, Laura Beatriz; Hoke, Gregory D.; Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina; Elsevier Science; Earth and Planetary Science Letters; 406; 10-2014; 153-164 0012-821X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0012821X1400538X?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2014.08.032 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842979833557024768 |
score |
13.004268 |