Independent Generation and Reactivity of Thymidine Radical Cations
- Autores
- Sun, Huabing; Taverna Porro, Marisa Lia; Greenberg, Marc M.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Thymidine radical cation (1) is produced by ionizing radiation and has been invoked as an intermediate in electron transfer in DNA. Previous studies on its structure and reactivity have utilized thymidine as a precursor, which limits quantitative product analysis because thymidine is readily reformed from 1. In this investigation, radical cation 1 is independently generated via β-heterolysis of a pyrimidine radical generated photochemically from an aryl sulfide. Thymidine is the major product (33%) from 1 at pH 7.2. Diastereomeric mixtures of thymidine glycol and the corresponding 5-hydroxperoxides resulting from water trapping of 1 are formed. Significantly lower yields of products such as 5-formyl-2′-deoxyuridine that are ascribable to deprotonation from the C5-methyl group of 1 are observed. Independent generation of the N3-methyl analogue of 1 (NMe-1) produces considerably higher yields of products derived from water trapping, and these products are formed in much higher yields than those attributable to the C5-methyl group deprotonation in NMe-1. N3-Methyl-thymidine is, however, the major product and is produced in as high as 70% yield when the radical cation is produced in the presence of excess thiol. The effects of exogenous reagents on product distributions are consistent with the formation of diffusively free radical cations (1, NMe-1). This method should be compatible with producing radical cations at defined positions within DNA.
Fil: Sun, Huabing. University Johns Hopkins; Estados Unidos
Fil: Taverna Porro, Marisa Lia. University Johns Hopkins; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Greenberg, Marc M.. University Johns Hopkins; Estados Unidos - Materia
-
Radical Cation
Dna Lesions
Irradiation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/47605
Ver los metadatos del registro completo
id |
CONICETDig_363339f158e56d90dbe8fc879e9a4642 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/47605 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Independent Generation and Reactivity of Thymidine Radical CationsSun, HuabingTaverna Porro, Marisa LiaGreenberg, Marc M.Radical CationDna LesionsIrradiationhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Thymidine radical cation (1) is produced by ionizing radiation and has been invoked as an intermediate in electron transfer in DNA. Previous studies on its structure and reactivity have utilized thymidine as a precursor, which limits quantitative product analysis because thymidine is readily reformed from 1. In this investigation, radical cation 1 is independently generated via β-heterolysis of a pyrimidine radical generated photochemically from an aryl sulfide. Thymidine is the major product (33%) from 1 at pH 7.2. Diastereomeric mixtures of thymidine glycol and the corresponding 5-hydroxperoxides resulting from water trapping of 1 are formed. Significantly lower yields of products such as 5-formyl-2′-deoxyuridine that are ascribable to deprotonation from the C5-methyl group of 1 are observed. Independent generation of the N3-methyl analogue of 1 (NMe-1) produces considerably higher yields of products derived from water trapping, and these products are formed in much higher yields than those attributable to the C5-methyl group deprotonation in NMe-1. N3-Methyl-thymidine is, however, the major product and is produced in as high as 70% yield when the radical cation is produced in the presence of excess thiol. The effects of exogenous reagents on product distributions are consistent with the formation of diffusively free radical cations (1, NMe-1). This method should be compatible with producing radical cations at defined positions within DNA.Fil: Sun, Huabing. University Johns Hopkins; Estados UnidosFil: Taverna Porro, Marisa Lia. University Johns Hopkins; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Greenberg, Marc M.. University Johns Hopkins; Estados UnidosAmerican Chemical Society2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47605Sun, Huabing; Taverna Porro, Marisa Lia; Greenberg, Marc M.; Independent Generation and Reactivity of Thymidine Radical Cations; American Chemical Society; Journal of Organic Chemistry; 82; 20; 10-2017; 11072-110830022-3263CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acs.joc.7b02017info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.joc.7b02017info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:00Zoai:ri.conicet.gov.ar:11336/47605instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:00.622CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Independent Generation and Reactivity of Thymidine Radical Cations |
title |
Independent Generation and Reactivity of Thymidine Radical Cations |
spellingShingle |
Independent Generation and Reactivity of Thymidine Radical Cations Sun, Huabing Radical Cation Dna Lesions Irradiation |
title_short |
Independent Generation and Reactivity of Thymidine Radical Cations |
title_full |
Independent Generation and Reactivity of Thymidine Radical Cations |
title_fullStr |
Independent Generation and Reactivity of Thymidine Radical Cations |
title_full_unstemmed |
Independent Generation and Reactivity of Thymidine Radical Cations |
title_sort |
Independent Generation and Reactivity of Thymidine Radical Cations |
dc.creator.none.fl_str_mv |
Sun, Huabing Taverna Porro, Marisa Lia Greenberg, Marc M. |
author |
Sun, Huabing |
author_facet |
Sun, Huabing Taverna Porro, Marisa Lia Greenberg, Marc M. |
author_role |
author |
author2 |
Taverna Porro, Marisa Lia Greenberg, Marc M. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Radical Cation Dna Lesions Irradiation |
topic |
Radical Cation Dna Lesions Irradiation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Thymidine radical cation (1) is produced by ionizing radiation and has been invoked as an intermediate in electron transfer in DNA. Previous studies on its structure and reactivity have utilized thymidine as a precursor, which limits quantitative product analysis because thymidine is readily reformed from 1. In this investigation, radical cation 1 is independently generated via β-heterolysis of a pyrimidine radical generated photochemically from an aryl sulfide. Thymidine is the major product (33%) from 1 at pH 7.2. Diastereomeric mixtures of thymidine glycol and the corresponding 5-hydroxperoxides resulting from water trapping of 1 are formed. Significantly lower yields of products such as 5-formyl-2′-deoxyuridine that are ascribable to deprotonation from the C5-methyl group of 1 are observed. Independent generation of the N3-methyl analogue of 1 (NMe-1) produces considerably higher yields of products derived from water trapping, and these products are formed in much higher yields than those attributable to the C5-methyl group deprotonation in NMe-1. N3-Methyl-thymidine is, however, the major product and is produced in as high as 70% yield when the radical cation is produced in the presence of excess thiol. The effects of exogenous reagents on product distributions are consistent with the formation of diffusively free radical cations (1, NMe-1). This method should be compatible with producing radical cations at defined positions within DNA. Fil: Sun, Huabing. University Johns Hopkins; Estados Unidos Fil: Taverna Porro, Marisa Lia. University Johns Hopkins; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Greenberg, Marc M.. University Johns Hopkins; Estados Unidos |
description |
Thymidine radical cation (1) is produced by ionizing radiation and has been invoked as an intermediate in electron transfer in DNA. Previous studies on its structure and reactivity have utilized thymidine as a precursor, which limits quantitative product analysis because thymidine is readily reformed from 1. In this investigation, radical cation 1 is independently generated via β-heterolysis of a pyrimidine radical generated photochemically from an aryl sulfide. Thymidine is the major product (33%) from 1 at pH 7.2. Diastereomeric mixtures of thymidine glycol and the corresponding 5-hydroxperoxides resulting from water trapping of 1 are formed. Significantly lower yields of products such as 5-formyl-2′-deoxyuridine that are ascribable to deprotonation from the C5-methyl group of 1 are observed. Independent generation of the N3-methyl analogue of 1 (NMe-1) produces considerably higher yields of products derived from water trapping, and these products are formed in much higher yields than those attributable to the C5-methyl group deprotonation in NMe-1. N3-Methyl-thymidine is, however, the major product and is produced in as high as 70% yield when the radical cation is produced in the presence of excess thiol. The effects of exogenous reagents on product distributions are consistent with the formation of diffusively free radical cations (1, NMe-1). This method should be compatible with producing radical cations at defined positions within DNA. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/47605 Sun, Huabing; Taverna Porro, Marisa Lia; Greenberg, Marc M.; Independent Generation and Reactivity of Thymidine Radical Cations; American Chemical Society; Journal of Organic Chemistry; 82; 20; 10-2017; 11072-11083 0022-3263 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/47605 |
identifier_str_mv |
Sun, Huabing; Taverna Porro, Marisa Lia; Greenberg, Marc M.; Independent Generation and Reactivity of Thymidine Radical Cations; American Chemical Society; Journal of Organic Chemistry; 82; 20; 10-2017; 11072-11083 0022-3263 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.joc.7b02017 info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.joc.7b02017 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613265338925056 |
score |
13.070432 |