Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs
- Autores
- Foth, C.; Hendrick, B. P.; Ezcurra, Martin Daniel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Non-avian saurischian skulls underwent at least 165 million years of evolution and shapes varied from elongated skulls, such as in the theropod Coelophysis, to short and box-shaped skulls, such as in the sauropod Camarasaurus. A number of factors have long been considered to drive skull shape, including phylogeny, dietary preferences and functional constraints. However, heterochrony is increasingly being recognized as an important factor in dinosaur evolution. In order to quantitatively analyse the impact of heterochrony on saurischian skull shape, we analysed five ontogenetic trajectories using two-dimensional geometric morphometrics in a phylogenetic framework. This allowed for the comparative investigation of main ontogenetic shape changes and the evaluation of how heterochrony affected skull shape through both ontogenetic and phylogenetic trajectories. Using principal component analyses and multivariate regressions, it was possible to quantify different ontogenetic trajectories and evaluate them for evidence of heterochronic events allowing testing of previous hypotheses on cranial heterochrony in saurischians. We found that the skull shape of the hypothetical ancestor of Saurischia likely led to basal Sauropodomorpha through paedomorphosis, and to basal Theropoda mainly through peramorphosis. Paedomorphosis then led from Orionides to Avetheropoda, indicating that the paedomorphic trend found by previous authors in advanced coelurosaurs may extend back into the early evolution of Avetheropoda. Not only are changes in saurischian skull shape complex due to the large number of factors that affected it, but heterochrony itself is complex, with a number of possible reversals throughout non-avian saurischian evolution. In general, the sampling of complete ontogenetic trajectories including early juveniles is considerably lower than the sampling of single adult or subadult individuals, which is a major impediment to the study of heterochrony on non-avian dinosaurs. Thus, the current work represents an exploratory analysis. To better understand the cranial ontogeny and the impact of heterochrony on skull evolution in saurischians, the data set that we present here must be expanded and complemented with further sampling from future fossil discoveries, especially of juvenile individuals.
Fil: Foth, C.. Bayerische Staatssammlung Für Paläontologie Und Geologie; Alemania. University of Fribourg/Freiburg; Suiza. Ludwig Maximilians Universitat; Alemania
Fil: Hendrick, B. P.. University of Massachussets; Estados Unidos. University of Pennsylvania; Estados Unidos
Fil: Ezcurra, Martin Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales ; Argentina. Ludwig Maximilians Universitat; Alemania - Materia
-
Ontogeny
Sauropodomorpha
Evolution
Theropoda
Skull shape
Dinosauria
Heterochrony
Geometric morphometrics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/44627
Ver los metadatos del registro completo
id |
CONICETDig_360a85f71975bfa9db898b3977e26b00 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/44627 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaursFoth, C.Hendrick, B. P.Ezcurra, Martin DanielOntogenySauropodomorphaEvolutionTheropodaSkull shapeDinosauriaHeterochronyGeometric morphometricshttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Non-avian saurischian skulls underwent at least 165 million years of evolution and shapes varied from elongated skulls, such as in the theropod Coelophysis, to short and box-shaped skulls, such as in the sauropod Camarasaurus. A number of factors have long been considered to drive skull shape, including phylogeny, dietary preferences and functional constraints. However, heterochrony is increasingly being recognized as an important factor in dinosaur evolution. In order to quantitatively analyse the impact of heterochrony on saurischian skull shape, we analysed five ontogenetic trajectories using two-dimensional geometric morphometrics in a phylogenetic framework. This allowed for the comparative investigation of main ontogenetic shape changes and the evaluation of how heterochrony affected skull shape through both ontogenetic and phylogenetic trajectories. Using principal component analyses and multivariate regressions, it was possible to quantify different ontogenetic trajectories and evaluate them for evidence of heterochronic events allowing testing of previous hypotheses on cranial heterochrony in saurischians. We found that the skull shape of the hypothetical ancestor of Saurischia likely led to basal Sauropodomorpha through paedomorphosis, and to basal Theropoda mainly through peramorphosis. Paedomorphosis then led from Orionides to Avetheropoda, indicating that the paedomorphic trend found by previous authors in advanced coelurosaurs may extend back into the early evolution of Avetheropoda. Not only are changes in saurischian skull shape complex due to the large number of factors that affected it, but heterochrony itself is complex, with a number of possible reversals throughout non-avian saurischian evolution. In general, the sampling of complete ontogenetic trajectories including early juveniles is considerably lower than the sampling of single adult or subadult individuals, which is a major impediment to the study of heterochrony on non-avian dinosaurs. Thus, the current work represents an exploratory analysis. To better understand the cranial ontogeny and the impact of heterochrony on skull evolution in saurischians, the data set that we present here must be expanded and complemented with further sampling from future fossil discoveries, especially of juvenile individuals.Fil: Foth, C.. Bayerische Staatssammlung Für Paläontologie Und Geologie; Alemania. University of Fribourg/Freiburg; Suiza. Ludwig Maximilians Universitat; AlemaniaFil: Hendrick, B. P.. University of Massachussets; Estados Unidos. University of Pennsylvania; Estados UnidosFil: Ezcurra, Martin Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales ; Argentina. Ludwig Maximilians Universitat; AlemaniaCorte Madera2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44627Foth, C.; Hendrick, B. P.; Ezcurra, Martin Daniel; Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs; Corte Madera; PeerJ; 4; 1-2016; 1-412167-8359CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.7717/peerj.1589info:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/1589/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:35Zoai:ri.conicet.gov.ar:11336/44627instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:35.976CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs |
title |
Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs |
spellingShingle |
Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs Foth, C. Ontogeny Sauropodomorpha Evolution Theropoda Skull shape Dinosauria Heterochrony Geometric morphometrics |
title_short |
Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs |
title_full |
Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs |
title_fullStr |
Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs |
title_full_unstemmed |
Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs |
title_sort |
Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs |
dc.creator.none.fl_str_mv |
Foth, C. Hendrick, B. P. Ezcurra, Martin Daniel |
author |
Foth, C. |
author_facet |
Foth, C. Hendrick, B. P. Ezcurra, Martin Daniel |
author_role |
author |
author2 |
Hendrick, B. P. Ezcurra, Martin Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ontogeny Sauropodomorpha Evolution Theropoda Skull shape Dinosauria Heterochrony Geometric morphometrics |
topic |
Ontogeny Sauropodomorpha Evolution Theropoda Skull shape Dinosauria Heterochrony Geometric morphometrics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Non-avian saurischian skulls underwent at least 165 million years of evolution and shapes varied from elongated skulls, such as in the theropod Coelophysis, to short and box-shaped skulls, such as in the sauropod Camarasaurus. A number of factors have long been considered to drive skull shape, including phylogeny, dietary preferences and functional constraints. However, heterochrony is increasingly being recognized as an important factor in dinosaur evolution. In order to quantitatively analyse the impact of heterochrony on saurischian skull shape, we analysed five ontogenetic trajectories using two-dimensional geometric morphometrics in a phylogenetic framework. This allowed for the comparative investigation of main ontogenetic shape changes and the evaluation of how heterochrony affected skull shape through both ontogenetic and phylogenetic trajectories. Using principal component analyses and multivariate regressions, it was possible to quantify different ontogenetic trajectories and evaluate them for evidence of heterochronic events allowing testing of previous hypotheses on cranial heterochrony in saurischians. We found that the skull shape of the hypothetical ancestor of Saurischia likely led to basal Sauropodomorpha through paedomorphosis, and to basal Theropoda mainly through peramorphosis. Paedomorphosis then led from Orionides to Avetheropoda, indicating that the paedomorphic trend found by previous authors in advanced coelurosaurs may extend back into the early evolution of Avetheropoda. Not only are changes in saurischian skull shape complex due to the large number of factors that affected it, but heterochrony itself is complex, with a number of possible reversals throughout non-avian saurischian evolution. In general, the sampling of complete ontogenetic trajectories including early juveniles is considerably lower than the sampling of single adult or subadult individuals, which is a major impediment to the study of heterochrony on non-avian dinosaurs. Thus, the current work represents an exploratory analysis. To better understand the cranial ontogeny and the impact of heterochrony on skull evolution in saurischians, the data set that we present here must be expanded and complemented with further sampling from future fossil discoveries, especially of juvenile individuals. Fil: Foth, C.. Bayerische Staatssammlung Für Paläontologie Und Geologie; Alemania. University of Fribourg/Freiburg; Suiza. Ludwig Maximilians Universitat; Alemania Fil: Hendrick, B. P.. University of Massachussets; Estados Unidos. University of Pennsylvania; Estados Unidos Fil: Ezcurra, Martin Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales ; Argentina. Ludwig Maximilians Universitat; Alemania |
description |
Non-avian saurischian skulls underwent at least 165 million years of evolution and shapes varied from elongated skulls, such as in the theropod Coelophysis, to short and box-shaped skulls, such as in the sauropod Camarasaurus. A number of factors have long been considered to drive skull shape, including phylogeny, dietary preferences and functional constraints. However, heterochrony is increasingly being recognized as an important factor in dinosaur evolution. In order to quantitatively analyse the impact of heterochrony on saurischian skull shape, we analysed five ontogenetic trajectories using two-dimensional geometric morphometrics in a phylogenetic framework. This allowed for the comparative investigation of main ontogenetic shape changes and the evaluation of how heterochrony affected skull shape through both ontogenetic and phylogenetic trajectories. Using principal component analyses and multivariate regressions, it was possible to quantify different ontogenetic trajectories and evaluate them for evidence of heterochronic events allowing testing of previous hypotheses on cranial heterochrony in saurischians. We found that the skull shape of the hypothetical ancestor of Saurischia likely led to basal Sauropodomorpha through paedomorphosis, and to basal Theropoda mainly through peramorphosis. Paedomorphosis then led from Orionides to Avetheropoda, indicating that the paedomorphic trend found by previous authors in advanced coelurosaurs may extend back into the early evolution of Avetheropoda. Not only are changes in saurischian skull shape complex due to the large number of factors that affected it, but heterochrony itself is complex, with a number of possible reversals throughout non-avian saurischian evolution. In general, the sampling of complete ontogenetic trajectories including early juveniles is considerably lower than the sampling of single adult or subadult individuals, which is a major impediment to the study of heterochrony on non-avian dinosaurs. Thus, the current work represents an exploratory analysis. To better understand the cranial ontogeny and the impact of heterochrony on skull evolution in saurischians, the data set that we present here must be expanded and complemented with further sampling from future fossil discoveries, especially of juvenile individuals. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/44627 Foth, C.; Hendrick, B. P.; Ezcurra, Martin Daniel; Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs; Corte Madera; PeerJ; 4; 1-2016; 1-41 2167-8359 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/44627 |
identifier_str_mv |
Foth, C.; Hendrick, B. P.; Ezcurra, Martin Daniel; Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs; Corte Madera; PeerJ; 4; 1-2016; 1-41 2167-8359 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.7717/peerj.1589 info:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/1589/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Corte Madera |
publisher.none.fl_str_mv |
Corte Madera |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268741735284736 |
score |
13.13397 |