Density functional theory study of water interactions on Mn-doped CeO2(1 1 1) surface

Autores
García Pintos, Delfina; Juan, Alfredo; Irigoyen, Beatriz del Luján
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Spin-polarized density functional theory (DFT + U) periodic calculations have been performed to study water adsorption and dissociation on the 12.5% Mn-doped CeO2(1 1 1) surface. Our results indicated that Mn cation is the surface active site for water adsorption and dissociation reactions. The H2O molecule preferably adsorbs on a Mn cation, causing some relaxation of the surface O-layer and, thus, facilitating the bonding of one of the HH2O with the nearest oxygen atom. After overcoming an energy barrier of 0.46 eV, the water molecule could dissociate into OH and H species. The latter configuration is about 50% more exothermic than the molecular one, suggesting the Ce0.875Mn0.125O1.9375(1 1 1) surface would be easily hydroxylated under reaction conditions. In addition, the calculations showed that water adsorption on the Mn-doped CeO2(1 1 1) surface did not favor the creation of surface oxygen vacancies as it has been reported for pure CeO2(1 1 1). On the other hand, we created a surface oxygen defect in the slab with structural oxygen vacancies and computed water interactions on the reduced surface. Although, the adsorption of OH species in the O-hole caused many surface and subsurface atomic displacements, no changes in the oxidation state of Mn and Ce cations were detected.
Fil: García Pintos, Delfina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; Argentina
Fil: Juan, Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Irigoyen, Beatriz del Luján. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Water Adsorption
Mn-Doped Ceo2(1 1 1) Surface
Dft + u Calculations
Ceria
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/29878

id CONICETDig_35d8390dcd86fe9aa70e3b8dc122bafa
oai_identifier_str oai:ri.conicet.gov.ar:11336/29878
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Density functional theory study of water interactions on Mn-doped CeO2(1 1 1) surfaceGarcía Pintos, DelfinaJuan, AlfredoIrigoyen, Beatriz del LujánWater AdsorptionMn-Doped Ceo2(1 1 1) SurfaceDft + u CalculationsCeriahttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Spin-polarized density functional theory (DFT + U) periodic calculations have been performed to study water adsorption and dissociation on the 12.5% Mn-doped CeO2(1 1 1) surface. Our results indicated that Mn cation is the surface active site for water adsorption and dissociation reactions. The H2O molecule preferably adsorbs on a Mn cation, causing some relaxation of the surface O-layer and, thus, facilitating the bonding of one of the HH2O with the nearest oxygen atom. After overcoming an energy barrier of 0.46 eV, the water molecule could dissociate into OH and H species. The latter configuration is about 50% more exothermic than the molecular one, suggesting the Ce0.875Mn0.125O1.9375(1 1 1) surface would be easily hydroxylated under reaction conditions. In addition, the calculations showed that water adsorption on the Mn-doped CeO2(1 1 1) surface did not favor the creation of surface oxygen vacancies as it has been reported for pure CeO2(1 1 1). On the other hand, we created a surface oxygen defect in the slab with structural oxygen vacancies and computed water interactions on the reduced surface. Although, the adsorption of OH species in the O-hole caused many surface and subsurface atomic displacements, no changes in the oxidation state of Mn and Ce cations were detected.Fil: García Pintos, Delfina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; ArgentinaFil: Juan, Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Irigoyen, Beatriz del Luján. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29878García Pintos, Delfina ; Juan, Alfredo; Irigoyen, Beatriz del Luján; Density functional theory study of water interactions on Mn-doped CeO2(1 1 1) surface; Elsevier Science; Applied Surface Science; 313; 6-2014; 784-7930169-4332CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.apsusc.2014.06.076info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169433214013610info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:20Zoai:ri.conicet.gov.ar:11336/29878instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:21.017CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Density functional theory study of water interactions on Mn-doped CeO2(1 1 1) surface
title Density functional theory study of water interactions on Mn-doped CeO2(1 1 1) surface
spellingShingle Density functional theory study of water interactions on Mn-doped CeO2(1 1 1) surface
García Pintos, Delfina
Water Adsorption
Mn-Doped Ceo2(1 1 1) Surface
Dft + u Calculations
Ceria
title_short Density functional theory study of water interactions on Mn-doped CeO2(1 1 1) surface
title_full Density functional theory study of water interactions on Mn-doped CeO2(1 1 1) surface
title_fullStr Density functional theory study of water interactions on Mn-doped CeO2(1 1 1) surface
title_full_unstemmed Density functional theory study of water interactions on Mn-doped CeO2(1 1 1) surface
title_sort Density functional theory study of water interactions on Mn-doped CeO2(1 1 1) surface
dc.creator.none.fl_str_mv García Pintos, Delfina
Juan, Alfredo
Irigoyen, Beatriz del Luján
author García Pintos, Delfina
author_facet García Pintos, Delfina
Juan, Alfredo
Irigoyen, Beatriz del Luján
author_role author
author2 Juan, Alfredo
Irigoyen, Beatriz del Luján
author2_role author
author
dc.subject.none.fl_str_mv Water Adsorption
Mn-Doped Ceo2(1 1 1) Surface
Dft + u Calculations
Ceria
topic Water Adsorption
Mn-Doped Ceo2(1 1 1) Surface
Dft + u Calculations
Ceria
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Spin-polarized density functional theory (DFT + U) periodic calculations have been performed to study water adsorption and dissociation on the 12.5% Mn-doped CeO2(1 1 1) surface. Our results indicated that Mn cation is the surface active site for water adsorption and dissociation reactions. The H2O molecule preferably adsorbs on a Mn cation, causing some relaxation of the surface O-layer and, thus, facilitating the bonding of one of the HH2O with the nearest oxygen atom. After overcoming an energy barrier of 0.46 eV, the water molecule could dissociate into OH and H species. The latter configuration is about 50% more exothermic than the molecular one, suggesting the Ce0.875Mn0.125O1.9375(1 1 1) surface would be easily hydroxylated under reaction conditions. In addition, the calculations showed that water adsorption on the Mn-doped CeO2(1 1 1) surface did not favor the creation of surface oxygen vacancies as it has been reported for pure CeO2(1 1 1). On the other hand, we created a surface oxygen defect in the slab with structural oxygen vacancies and computed water interactions on the reduced surface. Although, the adsorption of OH species in the O-hole caused many surface and subsurface atomic displacements, no changes in the oxidation state of Mn and Ce cations were detected.
Fil: García Pintos, Delfina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; Argentina
Fil: Juan, Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Irigoyen, Beatriz del Luján. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Spin-polarized density functional theory (DFT + U) periodic calculations have been performed to study water adsorption and dissociation on the 12.5% Mn-doped CeO2(1 1 1) surface. Our results indicated that Mn cation is the surface active site for water adsorption and dissociation reactions. The H2O molecule preferably adsorbs on a Mn cation, causing some relaxation of the surface O-layer and, thus, facilitating the bonding of one of the HH2O with the nearest oxygen atom. After overcoming an energy barrier of 0.46 eV, the water molecule could dissociate into OH and H species. The latter configuration is about 50% more exothermic than the molecular one, suggesting the Ce0.875Mn0.125O1.9375(1 1 1) surface would be easily hydroxylated under reaction conditions. In addition, the calculations showed that water adsorption on the Mn-doped CeO2(1 1 1) surface did not favor the creation of surface oxygen vacancies as it has been reported for pure CeO2(1 1 1). On the other hand, we created a surface oxygen defect in the slab with structural oxygen vacancies and computed water interactions on the reduced surface. Although, the adsorption of OH species in the O-hole caused many surface and subsurface atomic displacements, no changes in the oxidation state of Mn and Ce cations were detected.
publishDate 2014
dc.date.none.fl_str_mv 2014-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/29878
García Pintos, Delfina ; Juan, Alfredo; Irigoyen, Beatriz del Luján; Density functional theory study of water interactions on Mn-doped CeO2(1 1 1) surface; Elsevier Science; Applied Surface Science; 313; 6-2014; 784-793
0169-4332
CONICET Digital
CONICET
url http://hdl.handle.net/11336/29878
identifier_str_mv García Pintos, Delfina ; Juan, Alfredo; Irigoyen, Beatriz del Luján; Density functional theory study of water interactions on Mn-doped CeO2(1 1 1) surface; Elsevier Science; Applied Surface Science; 313; 6-2014; 784-793
0169-4332
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apsusc.2014.06.076
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169433214013610
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269752512217088
score 13.13397