Stokes flow paths separation and recirculation cells in X-junctions of varying angle

Autores
Cachile, Mario Andres; Talon, L.; Gomba, Juan Manuel; Hulin, J.P.; Auradou, H.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fluid and solute transfer in X-junctions between straight channels is shown to depend critically on the junction angle α in the Stokes flow regime. Experimentally, water and a water-dye solution are injected at equal flow rates in two facing channels of the junction. Planar laser induced fluorescence (PLIF) measurements show that the largest part of each injected fluid "bounces back" preferentially into the outlet channel at the lowest angle to the injection; this is opposite to the inertial case and requires a high curvature of the corresponding streamlines. The proportion of this fluid in the other channel decreases from 50% at α = 90° to 0% at a threshold angle. These counterintuitive features reflect the minimization of energy dissipation for Stokes flows. Finite elements numerical simulations of a 2D Stokes flow of equivalent geometry confirm these results and show that, below the threshold angle αc = 33.8°, recirculation cells are present in the center part of the junction and separate the two injected flows of the two solutions. Reducing further α leads to the appearance of new recirculation cells with lower flow velocities.
Fil: Cachile, Mario Andres. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Talon, L.. Universite de Paris Xi. Laboratoire Automatiques et Systeme Thermiques; Francia
Fil: Gomba, Juan Manuel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hulin, J.P.. Universite de Paris Xi. Laboratoire Automatiques et Systeme Thermiques; Francia
Fil: Auradou, H.. Universite de Paris Xi. Laboratoire Automatiques et Systeme Thermiques; Francia
Materia
Channel Flow
Dyes
finite element analysis
flow simulation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/66992

id CONICETDig_35aff66312dc2721c12e48a2c0c48dfc
oai_identifier_str oai:ri.conicet.gov.ar:11336/66992
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stokes flow paths separation and recirculation cells in X-junctions of varying angleCachile, Mario AndresTalon, L.Gomba, Juan ManuelHulin, J.P.Auradou, H.Channel FlowDyesfinite element analysisflow simulationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Fluid and solute transfer in X-junctions between straight channels is shown to depend critically on the junction angle α in the Stokes flow regime. Experimentally, water and a water-dye solution are injected at equal flow rates in two facing channels of the junction. Planar laser induced fluorescence (PLIF) measurements show that the largest part of each injected fluid "bounces back" preferentially into the outlet channel at the lowest angle to the injection; this is opposite to the inertial case and requires a high curvature of the corresponding streamlines. The proportion of this fluid in the other channel decreases from 50% at α = 90° to 0% at a threshold angle. These counterintuitive features reflect the minimization of energy dissipation for Stokes flows. Finite elements numerical simulations of a 2D Stokes flow of equivalent geometry confirm these results and show that, below the threshold angle αc = 33.8°, recirculation cells are present in the center part of the junction and separate the two injected flows of the two solutions. Reducing further α leads to the appearance of new recirculation cells with lower flow velocities.Fil: Cachile, Mario Andres. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Talon, L.. Universite de Paris Xi. Laboratoire Automatiques et Systeme Thermiques; FranciaFil: Gomba, Juan Manuel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hulin, J.P.. Universite de Paris Xi. Laboratoire Automatiques et Systeme Thermiques; FranciaFil: Auradou, H.. Universite de Paris Xi. Laboratoire Automatiques et Systeme Thermiques; FranciaAmerican Institute of Physics2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66992Cachile, Mario Andres; Talon, L.; Gomba, Juan Manuel; Hulin, J.P.; Auradou, H.; Stokes flow paths separation and recirculation cells in X-junctions of varying angle; American Institute of Physics; Physics of Fluids; 24; 2; 2-2012; 1-7; 0217041070-6631CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.3690100info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3690100info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:56:22Zoai:ri.conicet.gov.ar:11336/66992instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:56:22.965CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stokes flow paths separation and recirculation cells in X-junctions of varying angle
title Stokes flow paths separation and recirculation cells in X-junctions of varying angle
spellingShingle Stokes flow paths separation and recirculation cells in X-junctions of varying angle
Cachile, Mario Andres
Channel Flow
Dyes
finite element analysis
flow simulation
title_short Stokes flow paths separation and recirculation cells in X-junctions of varying angle
title_full Stokes flow paths separation and recirculation cells in X-junctions of varying angle
title_fullStr Stokes flow paths separation and recirculation cells in X-junctions of varying angle
title_full_unstemmed Stokes flow paths separation and recirculation cells in X-junctions of varying angle
title_sort Stokes flow paths separation and recirculation cells in X-junctions of varying angle
dc.creator.none.fl_str_mv Cachile, Mario Andres
Talon, L.
Gomba, Juan Manuel
Hulin, J.P.
Auradou, H.
author Cachile, Mario Andres
author_facet Cachile, Mario Andres
Talon, L.
Gomba, Juan Manuel
Hulin, J.P.
Auradou, H.
author_role author
author2 Talon, L.
Gomba, Juan Manuel
Hulin, J.P.
Auradou, H.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Channel Flow
Dyes
finite element analysis
flow simulation
topic Channel Flow
Dyes
finite element analysis
flow simulation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Fluid and solute transfer in X-junctions between straight channels is shown to depend critically on the junction angle α in the Stokes flow regime. Experimentally, water and a water-dye solution are injected at equal flow rates in two facing channels of the junction. Planar laser induced fluorescence (PLIF) measurements show that the largest part of each injected fluid "bounces back" preferentially into the outlet channel at the lowest angle to the injection; this is opposite to the inertial case and requires a high curvature of the corresponding streamlines. The proportion of this fluid in the other channel decreases from 50% at α = 90° to 0% at a threshold angle. These counterintuitive features reflect the minimization of energy dissipation for Stokes flows. Finite elements numerical simulations of a 2D Stokes flow of equivalent geometry confirm these results and show that, below the threshold angle αc = 33.8°, recirculation cells are present in the center part of the junction and separate the two injected flows of the two solutions. Reducing further α leads to the appearance of new recirculation cells with lower flow velocities.
Fil: Cachile, Mario Andres. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Talon, L.. Universite de Paris Xi. Laboratoire Automatiques et Systeme Thermiques; Francia
Fil: Gomba, Juan Manuel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hulin, J.P.. Universite de Paris Xi. Laboratoire Automatiques et Systeme Thermiques; Francia
Fil: Auradou, H.. Universite de Paris Xi. Laboratoire Automatiques et Systeme Thermiques; Francia
description Fluid and solute transfer in X-junctions between straight channels is shown to depend critically on the junction angle α in the Stokes flow regime. Experimentally, water and a water-dye solution are injected at equal flow rates in two facing channels of the junction. Planar laser induced fluorescence (PLIF) measurements show that the largest part of each injected fluid "bounces back" preferentially into the outlet channel at the lowest angle to the injection; this is opposite to the inertial case and requires a high curvature of the corresponding streamlines. The proportion of this fluid in the other channel decreases from 50% at α = 90° to 0% at a threshold angle. These counterintuitive features reflect the minimization of energy dissipation for Stokes flows. Finite elements numerical simulations of a 2D Stokes flow of equivalent geometry confirm these results and show that, below the threshold angle αc = 33.8°, recirculation cells are present in the center part of the junction and separate the two injected flows of the two solutions. Reducing further α leads to the appearance of new recirculation cells with lower flow velocities.
publishDate 2012
dc.date.none.fl_str_mv 2012-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/66992
Cachile, Mario Andres; Talon, L.; Gomba, Juan Manuel; Hulin, J.P.; Auradou, H.; Stokes flow paths separation and recirculation cells in X-junctions of varying angle; American Institute of Physics; Physics of Fluids; 24; 2; 2-2012; 1-7; 021704
1070-6631
CONICET Digital
CONICET
url http://hdl.handle.net/11336/66992
identifier_str_mv Cachile, Mario Andres; Talon, L.; Gomba, Juan Manuel; Hulin, J.P.; Auradou, H.; Stokes flow paths separation and recirculation cells in X-junctions of varying angle; American Institute of Physics; Physics of Fluids; 24; 2; 2-2012; 1-7; 021704
1070-6631
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.3690100
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3690100
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083098957053952
score 13.22299