A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatment
- Autores
- Chelaliche, Anibal Sebastian; Benitez, Silvana Florencia; Alvarenga, Adriana Elizabet; Zapata, Pedro Dario; Fonseca, Maria Isabel
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the last decades, there has been a growing concern regarding the remediation andrecovery of polychlorinated biphenyls (PCBs) contaminated sites. The technologies traditionallyused are often energy-intensive, resource-heavy, and highly disruptive to the environments beingtreated. In this context, mycoremediation has emerged as a highly sought-after alternative due tothe efficiency of certain fungal strains in achieving high removal percentages. This review providesan overview of mycoremediation strategies for PCB bioremediation. We begin by outlining theecotoxicological challenges posed by PCB usage and traditional methods employed forremediating contaminated areas. Secondly, we present different approaches to mycoremediationof PCBs. The use of native PCB-degrading fungi shows that some strains belonging to thePenicillium, Fusarium, and Scedosporium genera are capable of removing over 70% of differentPCBs congeners. Alternatively, we discuss using white rot fungi (WRF) due to their potential intransforming PCBs and associated metabolites. Strains belonging to this group, such as Pleurotuspulmonarius, can attain PCBs removal rates above 90% with a 10.27% reduction in toxicity.Additionally, cases demonstrating the application of WRF in long-term polluted soil and water arepresented as field examples. A trickle bed pilot-scale bioreactor approach using Pleurotusostreatus obtained an average PCBs removal of 89 ± 9% for contaminated groundwater. Similarly,microcosm experiments using P. ostreatus and Irpex lacteus removed up to 50.5% and 41.3% ofPCBs content in long-term contaminated soils, respectively. We also highlight the role ofextracellular ligninolytic enzymes, such as lacasses, lignin peroxidases, manganese peroxidase,manganese-independent peroxidase, and internal oxidoreductases in the PCBs metabolismcarried out by WRF. Finally, we conclude with a series of factors to consider when implementingthese techniques for remediating polluted sites, including up-scaling, current regulations, andcombination with other remediation techniques.
Fil: Chelaliche, Anibal Sebastian. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina
Fil: Benitez, Silvana Florencia. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina
Fil: Alvarenga, Adriana Elizabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina
Fil: Zapata, Pedro Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina
Fil: Fonseca, Maria Isabel. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina - Materia
-
BIOREMEDIATION
PERSISTENT ORGANIC POLLUTANT
UPSCALIG
METABOLISM
PERSISTENT ORGANIC POLLUTANT - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/239417
Ver los metadatos del registro completo
id |
CONICETDig_35259f1a3516149a806965b38af21875 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/239417 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatmentChelaliche, Anibal SebastianBenitez, Silvana FlorenciaAlvarenga, Adriana ElizabetZapata, Pedro DarioFonseca, Maria IsabelBIOREMEDIATIONPERSISTENT ORGANIC POLLUTANTUPSCALIGMETABOLISMPERSISTENT ORGANIC POLLUTANThttps://purl.org/becyt/ford/2.8https://purl.org/becyt/ford/2In the last decades, there has been a growing concern regarding the remediation andrecovery of polychlorinated biphenyls (PCBs) contaminated sites. The technologies traditionallyused are often energy-intensive, resource-heavy, and highly disruptive to the environments beingtreated. In this context, mycoremediation has emerged as a highly sought-after alternative due tothe efficiency of certain fungal strains in achieving high removal percentages. This review providesan overview of mycoremediation strategies for PCB bioremediation. We begin by outlining theecotoxicological challenges posed by PCB usage and traditional methods employed forremediating contaminated areas. Secondly, we present different approaches to mycoremediationof PCBs. The use of native PCB-degrading fungi shows that some strains belonging to thePenicillium, Fusarium, and Scedosporium genera are capable of removing over 70% of differentPCBs congeners. Alternatively, we discuss using white rot fungi (WRF) due to their potential intransforming PCBs and associated metabolites. Strains belonging to this group, such as Pleurotuspulmonarius, can attain PCBs removal rates above 90% with a 10.27% reduction in toxicity.Additionally, cases demonstrating the application of WRF in long-term polluted soil and water arepresented as field examples. A trickle bed pilot-scale bioreactor approach using Pleurotusostreatus obtained an average PCBs removal of 89 ± 9% for contaminated groundwater. Similarly,microcosm experiments using P. ostreatus and Irpex lacteus removed up to 50.5% and 41.3% ofPCBs content in long-term contaminated soils, respectively. We also highlight the role ofextracellular ligninolytic enzymes, such as lacasses, lignin peroxidases, manganese peroxidase,manganese-independent peroxidase, and internal oxidoreductases in the PCBs metabolismcarried out by WRF. Finally, we conclude with a series of factors to consider when implementingthese techniques for remediating polluted sites, including up-scaling, current regulations, andcombination with other remediation techniques.Fil: Chelaliche, Anibal Sebastian. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; ArgentinaFil: Benitez, Silvana Florencia. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; ArgentinaFil: Alvarenga, Adriana Elizabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; ArgentinaFil: Zapata, Pedro Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; ArgentinaFil: Fonseca, Maria Isabel. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; ArgentinaElsevier2024-06info:eu-repo/date/embargoEnd/2024-12-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/239417Chelaliche, Anibal Sebastian; Benitez, Silvana Florencia; Alvarenga, Adriana Elizabet; Zapata, Pedro Dario; Fonseca, Maria Isabel; A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatment; Elsevier; Environmental Nanotechnology, Monitoring & Management; 22; 6-2024; 1-462215-1532CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S221515322400062Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.enmm.2024.100974info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:21Zoai:ri.conicet.gov.ar:11336/239417instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:21.513CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatment |
title |
A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatment |
spellingShingle |
A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatment Chelaliche, Anibal Sebastian BIOREMEDIATION PERSISTENT ORGANIC POLLUTANT UPSCALIG METABOLISM PERSISTENT ORGANIC POLLUTANT |
title_short |
A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatment |
title_full |
A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatment |
title_fullStr |
A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatment |
title_full_unstemmed |
A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatment |
title_sort |
A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatment |
dc.creator.none.fl_str_mv |
Chelaliche, Anibal Sebastian Benitez, Silvana Florencia Alvarenga, Adriana Elizabet Zapata, Pedro Dario Fonseca, Maria Isabel |
author |
Chelaliche, Anibal Sebastian |
author_facet |
Chelaliche, Anibal Sebastian Benitez, Silvana Florencia Alvarenga, Adriana Elizabet Zapata, Pedro Dario Fonseca, Maria Isabel |
author_role |
author |
author2 |
Benitez, Silvana Florencia Alvarenga, Adriana Elizabet Zapata, Pedro Dario Fonseca, Maria Isabel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
BIOREMEDIATION PERSISTENT ORGANIC POLLUTANT UPSCALIG METABOLISM PERSISTENT ORGANIC POLLUTANT |
topic |
BIOREMEDIATION PERSISTENT ORGANIC POLLUTANT UPSCALIG METABOLISM PERSISTENT ORGANIC POLLUTANT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.8 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In the last decades, there has been a growing concern regarding the remediation andrecovery of polychlorinated biphenyls (PCBs) contaminated sites. The technologies traditionallyused are often energy-intensive, resource-heavy, and highly disruptive to the environments beingtreated. In this context, mycoremediation has emerged as a highly sought-after alternative due tothe efficiency of certain fungal strains in achieving high removal percentages. This review providesan overview of mycoremediation strategies for PCB bioremediation. We begin by outlining theecotoxicological challenges posed by PCB usage and traditional methods employed forremediating contaminated areas. Secondly, we present different approaches to mycoremediationof PCBs. The use of native PCB-degrading fungi shows that some strains belonging to thePenicillium, Fusarium, and Scedosporium genera are capable of removing over 70% of differentPCBs congeners. Alternatively, we discuss using white rot fungi (WRF) due to their potential intransforming PCBs and associated metabolites. Strains belonging to this group, such as Pleurotuspulmonarius, can attain PCBs removal rates above 90% with a 10.27% reduction in toxicity.Additionally, cases demonstrating the application of WRF in long-term polluted soil and water arepresented as field examples. A trickle bed pilot-scale bioreactor approach using Pleurotusostreatus obtained an average PCBs removal of 89 ± 9% for contaminated groundwater. Similarly,microcosm experiments using P. ostreatus and Irpex lacteus removed up to 50.5% and 41.3% ofPCBs content in long-term contaminated soils, respectively. We also highlight the role ofextracellular ligninolytic enzymes, such as lacasses, lignin peroxidases, manganese peroxidase,manganese-independent peroxidase, and internal oxidoreductases in the PCBs metabolismcarried out by WRF. Finally, we conclude with a series of factors to consider when implementingthese techniques for remediating polluted sites, including up-scaling, current regulations, andcombination with other remediation techniques. Fil: Chelaliche, Anibal Sebastian. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina Fil: Benitez, Silvana Florencia. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina Fil: Alvarenga, Adriana Elizabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina Fil: Zapata, Pedro Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina Fil: Fonseca, Maria Isabel. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina |
description |
In the last decades, there has been a growing concern regarding the remediation andrecovery of polychlorinated biphenyls (PCBs) contaminated sites. The technologies traditionallyused are often energy-intensive, resource-heavy, and highly disruptive to the environments beingtreated. In this context, mycoremediation has emerged as a highly sought-after alternative due tothe efficiency of certain fungal strains in achieving high removal percentages. This review providesan overview of mycoremediation strategies for PCB bioremediation. We begin by outlining theecotoxicological challenges posed by PCB usage and traditional methods employed forremediating contaminated areas. Secondly, we present different approaches to mycoremediationof PCBs. The use of native PCB-degrading fungi shows that some strains belonging to thePenicillium, Fusarium, and Scedosporium genera are capable of removing over 70% of differentPCBs congeners. Alternatively, we discuss using white rot fungi (WRF) due to their potential intransforming PCBs and associated metabolites. Strains belonging to this group, such as Pleurotuspulmonarius, can attain PCBs removal rates above 90% with a 10.27% reduction in toxicity.Additionally, cases demonstrating the application of WRF in long-term polluted soil and water arepresented as field examples. A trickle bed pilot-scale bioreactor approach using Pleurotusostreatus obtained an average PCBs removal of 89 ± 9% for contaminated groundwater. Similarly,microcosm experiments using P. ostreatus and Irpex lacteus removed up to 50.5% and 41.3% ofPCBs content in long-term contaminated soils, respectively. We also highlight the role ofextracellular ligninolytic enzymes, such as lacasses, lignin peroxidases, manganese peroxidase,manganese-independent peroxidase, and internal oxidoreductases in the PCBs metabolismcarried out by WRF. Finally, we conclude with a series of factors to consider when implementingthese techniques for remediating polluted sites, including up-scaling, current regulations, andcombination with other remediation techniques. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06 info:eu-repo/date/embargoEnd/2024-12-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/239417 Chelaliche, Anibal Sebastian; Benitez, Silvana Florencia; Alvarenga, Adriana Elizabet; Zapata, Pedro Dario; Fonseca, Maria Isabel; A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatment; Elsevier; Environmental Nanotechnology, Monitoring & Management; 22; 6-2024; 1-46 2215-1532 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/239417 |
identifier_str_mv |
Chelaliche, Anibal Sebastian; Benitez, Silvana Florencia; Alvarenga, Adriana Elizabet; Zapata, Pedro Dario; Fonseca, Maria Isabel; A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatment; Elsevier; Environmental Nanotechnology, Monitoring & Management; 22; 6-2024; 1-46 2215-1532 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S221515322400062X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.enmm.2024.100974 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614418524012544 |
score |
13.070432 |