Structural study and vibrational assignments of anticonvulsant topiramate by using dft calculations and two harmonic force fields

Autores
Ruiz Hidalgo, José; Brandan, Silvia Antonia
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
B3LYP/6-311++G** calculations have been combined with the scaled quantum mechanical force field (SQMFF) methodology to study structural and vibrational properties of anticonvulsant topiramate (TPM) agent. The 123 vibration modes expected for TPM were completely assigned, considering two harmonic force fields. In one case, C2V symmetries were considered for both SO2 and NH2 groups, while in the other one C2V and C3V symmetries for the NH2 and SO3 groups, respectively. The calculated harmonic vibrational frequencies are consistent with the experimental IR and Raman spectra in the solid phase. Very good concordances were found between the theoretical structures in gas phase and aqueous solution and the corresponding experimental reported. Thus, the fused five-membered ring in TPM produces that the pyranose ring adopts distorted twist-boat conformation, as was experimentally observed. In solution, all calculations were performed with the self-consistent reaction force (SCRF) method by the integral equation formalism variant polarised continuum (IEFPCM) and universal solvation model density (SMD) models. The corrected solvation energy value for TPM in aqueous solution by total non-electrostatic terms and by ZPVE is-1066.10 kJ/mol. The bond orders have evidenced that the three O atoms are not linked of the same form to S atom. Hence, the S atom of TPM is practically tetra-coordinate in both media, as evidenced by the high negative MK and NPA charges on the O atoms linked to it. The AIM study supports the higher stability of TPM in the gas phase while the NBO calculations suggest higher stability in solution. Gap values support the higher reactivity of TPM in solution than in the gas phase. The scaled force constant for both cases are reported for the first time. Comparisons of predicted1H-and13C-NMR spectra with the corresponding experimental ones reveal very good concordances.
Fil: Ruiz Hidalgo, José. Universidad Nacional de Tucuman. Facultad de Bioquimica, Quimica y Farmacia. Instituto de Quimica Inorganica. Cátedra de Química General.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Brandan, Silvia Antonia. Universidad Nacional de Tucuman. Facultad de Bioquimica, Quimica y Farmacia. Instituto de Quimica Inorganica. Cátedra de Química General.; Argentina
Materia
DFT CALCULATIONS
MOLECULAR STRUCTURE
TOPIRAMATE
VIBRATIONAL SPECTRA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/140841

id CONICETDig_345358fa57fca12da405610f48d94cd3
oai_identifier_str oai:ri.conicet.gov.ar:11336/140841
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Structural study and vibrational assignments of anticonvulsant topiramate by using dft calculations and two harmonic force fieldsRuiz Hidalgo, JoséBrandan, Silvia AntoniaDFT CALCULATIONSMOLECULAR STRUCTURETOPIRAMATEVIBRATIONAL SPECTRAhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1B3LYP/6-311++G** calculations have been combined with the scaled quantum mechanical force field (SQMFF) methodology to study structural and vibrational properties of anticonvulsant topiramate (TPM) agent. The 123 vibration modes expected for TPM were completely assigned, considering two harmonic force fields. In one case, C2V symmetries were considered for both SO2 and NH2 groups, while in the other one C2V and C3V symmetries for the NH2 and SO3 groups, respectively. The calculated harmonic vibrational frequencies are consistent with the experimental IR and Raman spectra in the solid phase. Very good concordances were found between the theoretical structures in gas phase and aqueous solution and the corresponding experimental reported. Thus, the fused five-membered ring in TPM produces that the pyranose ring adopts distorted twist-boat conformation, as was experimentally observed. In solution, all calculations were performed with the self-consistent reaction force (SCRF) method by the integral equation formalism variant polarised continuum (IEFPCM) and universal solvation model density (SMD) models. The corrected solvation energy value for TPM in aqueous solution by total non-electrostatic terms and by ZPVE is-1066.10 kJ/mol. The bond orders have evidenced that the three O atoms are not linked of the same form to S atom. Hence, the S atom of TPM is practically tetra-coordinate in both media, as evidenced by the high negative MK and NPA charges on the O atoms linked to it. The AIM study supports the higher stability of TPM in the gas phase while the NBO calculations suggest higher stability in solution. Gap values support the higher reactivity of TPM in solution than in the gas phase. The scaled force constant for both cases are reported for the first time. Comparisons of predicted1H-and13C-NMR spectra with the corresponding experimental ones reveal very good concordances.Fil: Ruiz Hidalgo, José. Universidad Nacional de Tucuman. Facultad de Bioquimica, Quimica y Farmacia. Instituto de Quimica Inorganica. Cátedra de Química General.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Brandan, Silvia Antonia. Universidad Nacional de Tucuman. Facultad de Bioquimica, Quimica y Farmacia. Instituto de Quimica Inorganica. Cátedra de Química General.; ArgentinaAMG Transcend Association2020-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/140841Ruiz Hidalgo, José; Brandan, Silvia Antonia; Structural study and vibrational assignments of anticonvulsant topiramate by using dft calculations and two harmonic force fields; AMG Transcend Association; Biointerface Research in Applied Chemistry; 11; 3; 9-2020; 9880-99032069-5837CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.33263/BRIAC113.98809903info:eu-repo/semantics/altIdentifier/url/https://biointerfaceresearch.com/wp-content/uploads/2020/09/20695837113.98809903.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:57:38Zoai:ri.conicet.gov.ar:11336/140841instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:57:38.831CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Structural study and vibrational assignments of anticonvulsant topiramate by using dft calculations and two harmonic force fields
title Structural study and vibrational assignments of anticonvulsant topiramate by using dft calculations and two harmonic force fields
spellingShingle Structural study and vibrational assignments of anticonvulsant topiramate by using dft calculations and two harmonic force fields
Ruiz Hidalgo, José
DFT CALCULATIONS
MOLECULAR STRUCTURE
TOPIRAMATE
VIBRATIONAL SPECTRA
title_short Structural study and vibrational assignments of anticonvulsant topiramate by using dft calculations and two harmonic force fields
title_full Structural study and vibrational assignments of anticonvulsant topiramate by using dft calculations and two harmonic force fields
title_fullStr Structural study and vibrational assignments of anticonvulsant topiramate by using dft calculations and two harmonic force fields
title_full_unstemmed Structural study and vibrational assignments of anticonvulsant topiramate by using dft calculations and two harmonic force fields
title_sort Structural study and vibrational assignments of anticonvulsant topiramate by using dft calculations and two harmonic force fields
dc.creator.none.fl_str_mv Ruiz Hidalgo, José
Brandan, Silvia Antonia
author Ruiz Hidalgo, José
author_facet Ruiz Hidalgo, José
Brandan, Silvia Antonia
author_role author
author2 Brandan, Silvia Antonia
author2_role author
dc.subject.none.fl_str_mv DFT CALCULATIONS
MOLECULAR STRUCTURE
TOPIRAMATE
VIBRATIONAL SPECTRA
topic DFT CALCULATIONS
MOLECULAR STRUCTURE
TOPIRAMATE
VIBRATIONAL SPECTRA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv B3LYP/6-311++G** calculations have been combined with the scaled quantum mechanical force field (SQMFF) methodology to study structural and vibrational properties of anticonvulsant topiramate (TPM) agent. The 123 vibration modes expected for TPM were completely assigned, considering two harmonic force fields. In one case, C2V symmetries were considered for both SO2 and NH2 groups, while in the other one C2V and C3V symmetries for the NH2 and SO3 groups, respectively. The calculated harmonic vibrational frequencies are consistent with the experimental IR and Raman spectra in the solid phase. Very good concordances were found between the theoretical structures in gas phase and aqueous solution and the corresponding experimental reported. Thus, the fused five-membered ring in TPM produces that the pyranose ring adopts distorted twist-boat conformation, as was experimentally observed. In solution, all calculations were performed with the self-consistent reaction force (SCRF) method by the integral equation formalism variant polarised continuum (IEFPCM) and universal solvation model density (SMD) models. The corrected solvation energy value for TPM in aqueous solution by total non-electrostatic terms and by ZPVE is-1066.10 kJ/mol. The bond orders have evidenced that the three O atoms are not linked of the same form to S atom. Hence, the S atom of TPM is practically tetra-coordinate in both media, as evidenced by the high negative MK and NPA charges on the O atoms linked to it. The AIM study supports the higher stability of TPM in the gas phase while the NBO calculations suggest higher stability in solution. Gap values support the higher reactivity of TPM in solution than in the gas phase. The scaled force constant for both cases are reported for the first time. Comparisons of predicted1H-and13C-NMR spectra with the corresponding experimental ones reveal very good concordances.
Fil: Ruiz Hidalgo, José. Universidad Nacional de Tucuman. Facultad de Bioquimica, Quimica y Farmacia. Instituto de Quimica Inorganica. Cátedra de Química General.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Brandan, Silvia Antonia. Universidad Nacional de Tucuman. Facultad de Bioquimica, Quimica y Farmacia. Instituto de Quimica Inorganica. Cátedra de Química General.; Argentina
description B3LYP/6-311++G** calculations have been combined with the scaled quantum mechanical force field (SQMFF) methodology to study structural and vibrational properties of anticonvulsant topiramate (TPM) agent. The 123 vibration modes expected for TPM were completely assigned, considering two harmonic force fields. In one case, C2V symmetries were considered for both SO2 and NH2 groups, while in the other one C2V and C3V symmetries for the NH2 and SO3 groups, respectively. The calculated harmonic vibrational frequencies are consistent with the experimental IR and Raman spectra in the solid phase. Very good concordances were found between the theoretical structures in gas phase and aqueous solution and the corresponding experimental reported. Thus, the fused five-membered ring in TPM produces that the pyranose ring adopts distorted twist-boat conformation, as was experimentally observed. In solution, all calculations were performed with the self-consistent reaction force (SCRF) method by the integral equation formalism variant polarised continuum (IEFPCM) and universal solvation model density (SMD) models. The corrected solvation energy value for TPM in aqueous solution by total non-electrostatic terms and by ZPVE is-1066.10 kJ/mol. The bond orders have evidenced that the three O atoms are not linked of the same form to S atom. Hence, the S atom of TPM is practically tetra-coordinate in both media, as evidenced by the high negative MK and NPA charges on the O atoms linked to it. The AIM study supports the higher stability of TPM in the gas phase while the NBO calculations suggest higher stability in solution. Gap values support the higher reactivity of TPM in solution than in the gas phase. The scaled force constant for both cases are reported for the first time. Comparisons of predicted1H-and13C-NMR spectra with the corresponding experimental ones reveal very good concordances.
publishDate 2020
dc.date.none.fl_str_mv 2020-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/140841
Ruiz Hidalgo, José; Brandan, Silvia Antonia; Structural study and vibrational assignments of anticonvulsant topiramate by using dft calculations and two harmonic force fields; AMG Transcend Association; Biointerface Research in Applied Chemistry; 11; 3; 9-2020; 9880-9903
2069-5837
CONICET Digital
CONICET
url http://hdl.handle.net/11336/140841
identifier_str_mv Ruiz Hidalgo, José; Brandan, Silvia Antonia; Structural study and vibrational assignments of anticonvulsant topiramate by using dft calculations and two harmonic force fields; AMG Transcend Association; Biointerface Research in Applied Chemistry; 11; 3; 9-2020; 9880-9903
2069-5837
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.33263/BRIAC113.98809903
info:eu-repo/semantics/altIdentifier/url/https://biointerfaceresearch.com/wp-content/uploads/2020/09/20695837113.98809903.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv AMG Transcend Association
publisher.none.fl_str_mv AMG Transcend Association
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606920001224704
score 13.000565