Thermal expansion of a Spheroidal Graphite Iron: A micromechanical approach

Autores
Rodriguez, Francisco; Boccardo, Adrian Dante; Dardati, Patricia Mónica; Celentano, Diego; Godoy, Luis Augusto
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Dimensional variations experienced by materials due to temperature changes are described by the Coefficient of Thermal Expansion (CTE), which is strongly dependent on microstructural features, especially on composites materials. Special attention is given in this work to Spheroidal Graphite Iron (SGI), for which the microstructure may be considered as a composite material formed by graphite particles embedded in a continuous matrix. In this work, a micromechanical approach, accounting for the manufacturing process, was used to compute the CTE of an eutectic SGI in an as-cast condition as a function of microstructural features and temperature. A cubic shaped Representative Volume Element (RVE) with Periodic Boundary Conditions (PBCs) was generated to model the microstructure of SGI. RVEs were formed by 12 non-overlapping spherical nodules embedded in a matrix with varying content of ferrite and perlite, and their size was determined by means of a convergence study. Using finite elements analysis, the macroscopic CTEs were computed for cooling and heating the material in the range from 25 °C to 500 °C. Using this micromechanical model, it was found that volumetric fractions of phases and temperature play a key role on the CTE. This coefficient increased by raising the temperature, increasing the volumetric fraction of ferrite, or decreasing the volumetric fraction of graphite. The manufacturing process had also an influence because plasticity occurred in the metallic matrix during the cooling stage of the casting process. Multivariable polynomial regressions were used on results of the micromechanical model to develop a mathematical expression and evaluate the CTE as a function of the volumetric fractions of phases and temperature. Results of the mathematical expression are compared with experimental data, finding a fairly good correlation between them.
Fil: Rodriguez, Francisco. Universidad Tecnológica Nacional; Argentina
Fil: Boccardo, Adrian Dante. Universidad Nacional de Córdoba; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Mecanica; Argentina
Fil: Dardati, Patricia Mónica. Universidad Tecnológica Nacional; Argentina
Fil: Celentano, Diego. Pontificia Universidad Católica de Chile; Chile
Fil: Godoy, Luis Augusto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Materia
COEFFICIENT OF THERMAL EXPANSION (CTE)
FINITE ELEMENT ANALYSIS (FEA)
MICROMECHANICS
REPRESENTATIVE VOLUME ELEMENT (RVE)
SPHEROIDAL GRAPHITE IRON (SGI)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/87213

id CONICETDig_3364b0b796d64052b4ad089d95e6ec8f
oai_identifier_str oai:ri.conicet.gov.ar:11336/87213
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Thermal expansion of a Spheroidal Graphite Iron: A micromechanical approachRodriguez, FranciscoBoccardo, Adrian DanteDardati, Patricia MónicaCelentano, DiegoGodoy, Luis AugustoCOEFFICIENT OF THERMAL EXPANSION (CTE)FINITE ELEMENT ANALYSIS (FEA)MICROMECHANICSREPRESENTATIVE VOLUME ELEMENT (RVE)SPHEROIDAL GRAPHITE IRON (SGI)https://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Dimensional variations experienced by materials due to temperature changes are described by the Coefficient of Thermal Expansion (CTE), which is strongly dependent on microstructural features, especially on composites materials. Special attention is given in this work to Spheroidal Graphite Iron (SGI), for which the microstructure may be considered as a composite material formed by graphite particles embedded in a continuous matrix. In this work, a micromechanical approach, accounting for the manufacturing process, was used to compute the CTE of an eutectic SGI in an as-cast condition as a function of microstructural features and temperature. A cubic shaped Representative Volume Element (RVE) with Periodic Boundary Conditions (PBCs) was generated to model the microstructure of SGI. RVEs were formed by 12 non-overlapping spherical nodules embedded in a matrix with varying content of ferrite and perlite, and their size was determined by means of a convergence study. Using finite elements analysis, the macroscopic CTEs were computed for cooling and heating the material in the range from 25 °C to 500 °C. Using this micromechanical model, it was found that volumetric fractions of phases and temperature play a key role on the CTE. This coefficient increased by raising the temperature, increasing the volumetric fraction of ferrite, or decreasing the volumetric fraction of graphite. The manufacturing process had also an influence because plasticity occurred in the metallic matrix during the cooling stage of the casting process. Multivariable polynomial regressions were used on results of the micromechanical model to develop a mathematical expression and evaluate the CTE as a function of the volumetric fractions of phases and temperature. Results of the mathematical expression are compared with experimental data, finding a fairly good correlation between them.Fil: Rodriguez, Francisco. Universidad Tecnológica Nacional; ArgentinaFil: Boccardo, Adrian Dante. Universidad Nacional de Córdoba; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Mecanica; ArgentinaFil: Dardati, Patricia Mónica. Universidad Tecnológica Nacional; ArgentinaFil: Celentano, Diego. Pontificia Universidad Católica de Chile; ChileFil: Godoy, Luis Augusto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaElsevier Science2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87213Rodriguez, Francisco; Boccardo, Adrian Dante; Dardati, Patricia Mónica; Celentano, Diego; Godoy, Luis Augusto; Thermal expansion of a Spheroidal Graphite Iron: A micromechanical approach; Elsevier Science; Finite Elements In Analysis And Design; 141; 3-2018; 26-360168-874XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0168874X17306947info:eu-repo/semantics/altIdentifier/doi/10.1016/j.finel.2017.11.012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:38Zoai:ri.conicet.gov.ar:11336/87213instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:38.286CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Thermal expansion of a Spheroidal Graphite Iron: A micromechanical approach
title Thermal expansion of a Spheroidal Graphite Iron: A micromechanical approach
spellingShingle Thermal expansion of a Spheroidal Graphite Iron: A micromechanical approach
Rodriguez, Francisco
COEFFICIENT OF THERMAL EXPANSION (CTE)
FINITE ELEMENT ANALYSIS (FEA)
MICROMECHANICS
REPRESENTATIVE VOLUME ELEMENT (RVE)
SPHEROIDAL GRAPHITE IRON (SGI)
title_short Thermal expansion of a Spheroidal Graphite Iron: A micromechanical approach
title_full Thermal expansion of a Spheroidal Graphite Iron: A micromechanical approach
title_fullStr Thermal expansion of a Spheroidal Graphite Iron: A micromechanical approach
title_full_unstemmed Thermal expansion of a Spheroidal Graphite Iron: A micromechanical approach
title_sort Thermal expansion of a Spheroidal Graphite Iron: A micromechanical approach
dc.creator.none.fl_str_mv Rodriguez, Francisco
Boccardo, Adrian Dante
Dardati, Patricia Mónica
Celentano, Diego
Godoy, Luis Augusto
author Rodriguez, Francisco
author_facet Rodriguez, Francisco
Boccardo, Adrian Dante
Dardati, Patricia Mónica
Celentano, Diego
Godoy, Luis Augusto
author_role author
author2 Boccardo, Adrian Dante
Dardati, Patricia Mónica
Celentano, Diego
Godoy, Luis Augusto
author2_role author
author
author
author
dc.subject.none.fl_str_mv COEFFICIENT OF THERMAL EXPANSION (CTE)
FINITE ELEMENT ANALYSIS (FEA)
MICROMECHANICS
REPRESENTATIVE VOLUME ELEMENT (RVE)
SPHEROIDAL GRAPHITE IRON (SGI)
topic COEFFICIENT OF THERMAL EXPANSION (CTE)
FINITE ELEMENT ANALYSIS (FEA)
MICROMECHANICS
REPRESENTATIVE VOLUME ELEMENT (RVE)
SPHEROIDAL GRAPHITE IRON (SGI)
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Dimensional variations experienced by materials due to temperature changes are described by the Coefficient of Thermal Expansion (CTE), which is strongly dependent on microstructural features, especially on composites materials. Special attention is given in this work to Spheroidal Graphite Iron (SGI), for which the microstructure may be considered as a composite material formed by graphite particles embedded in a continuous matrix. In this work, a micromechanical approach, accounting for the manufacturing process, was used to compute the CTE of an eutectic SGI in an as-cast condition as a function of microstructural features and temperature. A cubic shaped Representative Volume Element (RVE) with Periodic Boundary Conditions (PBCs) was generated to model the microstructure of SGI. RVEs were formed by 12 non-overlapping spherical nodules embedded in a matrix with varying content of ferrite and perlite, and their size was determined by means of a convergence study. Using finite elements analysis, the macroscopic CTEs were computed for cooling and heating the material in the range from 25 °C to 500 °C. Using this micromechanical model, it was found that volumetric fractions of phases and temperature play a key role on the CTE. This coefficient increased by raising the temperature, increasing the volumetric fraction of ferrite, or decreasing the volumetric fraction of graphite. The manufacturing process had also an influence because plasticity occurred in the metallic matrix during the cooling stage of the casting process. Multivariable polynomial regressions were used on results of the micromechanical model to develop a mathematical expression and evaluate the CTE as a function of the volumetric fractions of phases and temperature. Results of the mathematical expression are compared with experimental data, finding a fairly good correlation between them.
Fil: Rodriguez, Francisco. Universidad Tecnológica Nacional; Argentina
Fil: Boccardo, Adrian Dante. Universidad Nacional de Córdoba; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Mecanica; Argentina
Fil: Dardati, Patricia Mónica. Universidad Tecnológica Nacional; Argentina
Fil: Celentano, Diego. Pontificia Universidad Católica de Chile; Chile
Fil: Godoy, Luis Augusto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
description Dimensional variations experienced by materials due to temperature changes are described by the Coefficient of Thermal Expansion (CTE), which is strongly dependent on microstructural features, especially on composites materials. Special attention is given in this work to Spheroidal Graphite Iron (SGI), for which the microstructure may be considered as a composite material formed by graphite particles embedded in a continuous matrix. In this work, a micromechanical approach, accounting for the manufacturing process, was used to compute the CTE of an eutectic SGI in an as-cast condition as a function of microstructural features and temperature. A cubic shaped Representative Volume Element (RVE) with Periodic Boundary Conditions (PBCs) was generated to model the microstructure of SGI. RVEs were formed by 12 non-overlapping spherical nodules embedded in a matrix with varying content of ferrite and perlite, and their size was determined by means of a convergence study. Using finite elements analysis, the macroscopic CTEs were computed for cooling and heating the material in the range from 25 °C to 500 °C. Using this micromechanical model, it was found that volumetric fractions of phases and temperature play a key role on the CTE. This coefficient increased by raising the temperature, increasing the volumetric fraction of ferrite, or decreasing the volumetric fraction of graphite. The manufacturing process had also an influence because plasticity occurred in the metallic matrix during the cooling stage of the casting process. Multivariable polynomial regressions were used on results of the micromechanical model to develop a mathematical expression and evaluate the CTE as a function of the volumetric fractions of phases and temperature. Results of the mathematical expression are compared with experimental data, finding a fairly good correlation between them.
publishDate 2018
dc.date.none.fl_str_mv 2018-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/87213
Rodriguez, Francisco; Boccardo, Adrian Dante; Dardati, Patricia Mónica; Celentano, Diego; Godoy, Luis Augusto; Thermal expansion of a Spheroidal Graphite Iron: A micromechanical approach; Elsevier Science; Finite Elements In Analysis And Design; 141; 3-2018; 26-36
0168-874X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/87213
identifier_str_mv Rodriguez, Francisco; Boccardo, Adrian Dante; Dardati, Patricia Mónica; Celentano, Diego; Godoy, Luis Augusto; Thermal expansion of a Spheroidal Graphite Iron: A micromechanical approach; Elsevier Science; Finite Elements In Analysis And Design; 141; 3-2018; 26-36
0168-874X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0168874X17306947
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.finel.2017.11.012
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613111782309888
score 13.070432