An efficient adaptive method for estimating the distance between mobile sensors
- Autores
- Milocco, Ruben Horacio; Boumerdassi, Selma
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The received signal strength (RSS) is a common source of information used for estimating the distance between two wireless nodes, whether these nodes are stationary or mobile. Minimum mean squared error distance estimation methods that use the RSS require prior knowledge of both the variance of the noise and, in the case of mobile sensors, the dynamics of the nodes’ mobility. In mobile applications, where low computational complexity is important, pseudo-optimal estimations are preferred, as they do not require such information. In this case, the maximum likelihood estimator (MLE) is often used. In this paper, we propose an efficient pseudo-optimal log-power based distance estimation method using RSS under lognormal shadowing, that improves the MLE. It does not require a priori knowledge either of the movement dynamics or of the variance of the noise. The method is based on adaptively minimizing the variance of the prediction error, using a random walk model with correlated increments. It is analytically demonstrated that the distance estimation error variance of the proposed method improves the MLE in both the static and mobile cases. We use a simulated velocity model example to compare its performance with other algorithms in this group, such as the linear mean square filter and the Gauss–Newton search.
Fil: Milocco, Ruben Horacio. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Boumerdassi, Selma. INRIA/Hipercom team; Francia - Materia
-
Adaptive Distance Estimation
Localization
Received Signal Strength
Wireless Network - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/52035
Ver los metadatos del registro completo
id |
CONICETDig_33317383481993d3f0a28343ebf59130 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/52035 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An efficient adaptive method for estimating the distance between mobile sensorsMilocco, Ruben HoracioBoumerdassi, SelmaAdaptive Distance EstimationLocalizationReceived Signal StrengthWireless Networkhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The received signal strength (RSS) is a common source of information used for estimating the distance between two wireless nodes, whether these nodes are stationary or mobile. Minimum mean squared error distance estimation methods that use the RSS require prior knowledge of both the variance of the noise and, in the case of mobile sensors, the dynamics of the nodes’ mobility. In mobile applications, where low computational complexity is important, pseudo-optimal estimations are preferred, as they do not require such information. In this case, the maximum likelihood estimator (MLE) is often used. In this paper, we propose an efficient pseudo-optimal log-power based distance estimation method using RSS under lognormal shadowing, that improves the MLE. It does not require a priori knowledge either of the movement dynamics or of the variance of the noise. The method is based on adaptively minimizing the variance of the prediction error, using a random walk model with correlated increments. It is analytically demonstrated that the distance estimation error variance of the proposed method improves the MLE in both the static and mobile cases. We use a simulated velocity model example to compare its performance with other algorithms in this group, such as the linear mean square filter and the Gauss–Newton search.Fil: Milocco, Ruben Horacio. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Boumerdassi, Selma. INRIA/Hipercom team; FranciaSpringer2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52035Milocco, Ruben Horacio; Boumerdassi, Selma; An efficient adaptive method for estimating the distance between mobile sensors; Springer; Wireless Networks; 21; 8; 11-2015; 2519-25291022-00381572-8196CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11276-015-0930-3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11276-015-0930-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:19:10Zoai:ri.conicet.gov.ar:11336/52035instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:19:11.232CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An efficient adaptive method for estimating the distance between mobile sensors |
title |
An efficient adaptive method for estimating the distance between mobile sensors |
spellingShingle |
An efficient adaptive method for estimating the distance between mobile sensors Milocco, Ruben Horacio Adaptive Distance Estimation Localization Received Signal Strength Wireless Network |
title_short |
An efficient adaptive method for estimating the distance between mobile sensors |
title_full |
An efficient adaptive method for estimating the distance between mobile sensors |
title_fullStr |
An efficient adaptive method for estimating the distance between mobile sensors |
title_full_unstemmed |
An efficient adaptive method for estimating the distance between mobile sensors |
title_sort |
An efficient adaptive method for estimating the distance between mobile sensors |
dc.creator.none.fl_str_mv |
Milocco, Ruben Horacio Boumerdassi, Selma |
author |
Milocco, Ruben Horacio |
author_facet |
Milocco, Ruben Horacio Boumerdassi, Selma |
author_role |
author |
author2 |
Boumerdassi, Selma |
author2_role |
author |
dc.subject.none.fl_str_mv |
Adaptive Distance Estimation Localization Received Signal Strength Wireless Network |
topic |
Adaptive Distance Estimation Localization Received Signal Strength Wireless Network |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The received signal strength (RSS) is a common source of information used for estimating the distance between two wireless nodes, whether these nodes are stationary or mobile. Minimum mean squared error distance estimation methods that use the RSS require prior knowledge of both the variance of the noise and, in the case of mobile sensors, the dynamics of the nodes’ mobility. In mobile applications, where low computational complexity is important, pseudo-optimal estimations are preferred, as they do not require such information. In this case, the maximum likelihood estimator (MLE) is often used. In this paper, we propose an efficient pseudo-optimal log-power based distance estimation method using RSS under lognormal shadowing, that improves the MLE. It does not require a priori knowledge either of the movement dynamics or of the variance of the noise. The method is based on adaptively minimizing the variance of the prediction error, using a random walk model with correlated increments. It is analytically demonstrated that the distance estimation error variance of the proposed method improves the MLE in both the static and mobile cases. We use a simulated velocity model example to compare its performance with other algorithms in this group, such as the linear mean square filter and the Gauss–Newton search. Fil: Milocco, Ruben Horacio. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Boumerdassi, Selma. INRIA/Hipercom team; Francia |
description |
The received signal strength (RSS) is a common source of information used for estimating the distance between two wireless nodes, whether these nodes are stationary or mobile. Minimum mean squared error distance estimation methods that use the RSS require prior knowledge of both the variance of the noise and, in the case of mobile sensors, the dynamics of the nodes’ mobility. In mobile applications, where low computational complexity is important, pseudo-optimal estimations are preferred, as they do not require such information. In this case, the maximum likelihood estimator (MLE) is often used. In this paper, we propose an efficient pseudo-optimal log-power based distance estimation method using RSS under lognormal shadowing, that improves the MLE. It does not require a priori knowledge either of the movement dynamics or of the variance of the noise. The method is based on adaptively minimizing the variance of the prediction error, using a random walk model with correlated increments. It is analytically demonstrated that the distance estimation error variance of the proposed method improves the MLE in both the static and mobile cases. We use a simulated velocity model example to compare its performance with other algorithms in this group, such as the linear mean square filter and the Gauss–Newton search. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/52035 Milocco, Ruben Horacio; Boumerdassi, Selma; An efficient adaptive method for estimating the distance between mobile sensors; Springer; Wireless Networks; 21; 8; 11-2015; 2519-2529 1022-0038 1572-8196 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/52035 |
identifier_str_mv |
Milocco, Ruben Horacio; Boumerdassi, Selma; An efficient adaptive method for estimating the distance between mobile sensors; Springer; Wireless Networks; 21; 8; 11-2015; 2519-2529 1022-0038 1572-8196 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11276-015-0930-3 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11276-015-0930-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781665799569408 |
score |
12.982451 |