An efficient adaptive method for estimating the distance between mobile sensors

Autores
Milocco, Ruben Horacio; Boumerdassi, Selma
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The received signal strength (RSS) is a common source of information used for estimating the distance between two wireless nodes, whether these nodes are stationary or mobile. Minimum mean squared error distance estimation methods that use the RSS require prior knowledge of both the variance of the noise and, in the case of mobile sensors, the dynamics of the nodes’ mobility. In mobile applications, where low computational complexity is important, pseudo-optimal estimations are preferred, as they do not require such information. In this case, the maximum likelihood estimator (MLE) is often used. In this paper, we propose an efficient pseudo-optimal log-power based distance estimation method using RSS under lognormal shadowing, that improves the MLE. It does not require a priori knowledge either of the movement dynamics or of the variance of the noise. The method is based on adaptively minimizing the variance of the prediction error, using a random walk model with correlated increments. It is analytically demonstrated that the distance estimation error variance of the proposed method improves the MLE in both the static and mobile cases. We use a simulated velocity model example to compare its performance with other algorithms in this group, such as the linear mean square filter and the Gauss–Newton search.
Fil: Milocco, Ruben Horacio. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Boumerdassi, Selma. INRIA/Hipercom team; Francia
Materia
Adaptive Distance Estimation
Localization
Received Signal Strength
Wireless Network
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/52035

id CONICETDig_33317383481993d3f0a28343ebf59130
oai_identifier_str oai:ri.conicet.gov.ar:11336/52035
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An efficient adaptive method for estimating the distance between mobile sensorsMilocco, Ruben HoracioBoumerdassi, SelmaAdaptive Distance EstimationLocalizationReceived Signal StrengthWireless Networkhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The received signal strength (RSS) is a common source of information used for estimating the distance between two wireless nodes, whether these nodes are stationary or mobile. Minimum mean squared error distance estimation methods that use the RSS require prior knowledge of both the variance of the noise and, in the case of mobile sensors, the dynamics of the nodes’ mobility. In mobile applications, where low computational complexity is important, pseudo-optimal estimations are preferred, as they do not require such information. In this case, the maximum likelihood estimator (MLE) is often used. In this paper, we propose an efficient pseudo-optimal log-power based distance estimation method using RSS under lognormal shadowing, that improves the MLE. It does not require a priori knowledge either of the movement dynamics or of the variance of the noise. The method is based on adaptively minimizing the variance of the prediction error, using a random walk model with correlated increments. It is analytically demonstrated that the distance estimation error variance of the proposed method improves the MLE in both the static and mobile cases. We use a simulated velocity model example to compare its performance with other algorithms in this group, such as the linear mean square filter and the Gauss–Newton search.Fil: Milocco, Ruben Horacio. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Boumerdassi, Selma. INRIA/Hipercom team; FranciaSpringer2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52035Milocco, Ruben Horacio; Boumerdassi, Selma; An efficient adaptive method for estimating the distance between mobile sensors; Springer; Wireless Networks; 21; 8; 11-2015; 2519-25291022-00381572-8196CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11276-015-0930-3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11276-015-0930-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:19:10Zoai:ri.conicet.gov.ar:11336/52035instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:19:11.232CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An efficient adaptive method for estimating the distance between mobile sensors
title An efficient adaptive method for estimating the distance between mobile sensors
spellingShingle An efficient adaptive method for estimating the distance between mobile sensors
Milocco, Ruben Horacio
Adaptive Distance Estimation
Localization
Received Signal Strength
Wireless Network
title_short An efficient adaptive method for estimating the distance between mobile sensors
title_full An efficient adaptive method for estimating the distance between mobile sensors
title_fullStr An efficient adaptive method for estimating the distance between mobile sensors
title_full_unstemmed An efficient adaptive method for estimating the distance between mobile sensors
title_sort An efficient adaptive method for estimating the distance between mobile sensors
dc.creator.none.fl_str_mv Milocco, Ruben Horacio
Boumerdassi, Selma
author Milocco, Ruben Horacio
author_facet Milocco, Ruben Horacio
Boumerdassi, Selma
author_role author
author2 Boumerdassi, Selma
author2_role author
dc.subject.none.fl_str_mv Adaptive Distance Estimation
Localization
Received Signal Strength
Wireless Network
topic Adaptive Distance Estimation
Localization
Received Signal Strength
Wireless Network
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The received signal strength (RSS) is a common source of information used for estimating the distance between two wireless nodes, whether these nodes are stationary or mobile. Minimum mean squared error distance estimation methods that use the RSS require prior knowledge of both the variance of the noise and, in the case of mobile sensors, the dynamics of the nodes’ mobility. In mobile applications, where low computational complexity is important, pseudo-optimal estimations are preferred, as they do not require such information. In this case, the maximum likelihood estimator (MLE) is often used. In this paper, we propose an efficient pseudo-optimal log-power based distance estimation method using RSS under lognormal shadowing, that improves the MLE. It does not require a priori knowledge either of the movement dynamics or of the variance of the noise. The method is based on adaptively minimizing the variance of the prediction error, using a random walk model with correlated increments. It is analytically demonstrated that the distance estimation error variance of the proposed method improves the MLE in both the static and mobile cases. We use a simulated velocity model example to compare its performance with other algorithms in this group, such as the linear mean square filter and the Gauss–Newton search.
Fil: Milocco, Ruben Horacio. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Boumerdassi, Selma. INRIA/Hipercom team; Francia
description The received signal strength (RSS) is a common source of information used for estimating the distance between two wireless nodes, whether these nodes are stationary or mobile. Minimum mean squared error distance estimation methods that use the RSS require prior knowledge of both the variance of the noise and, in the case of mobile sensors, the dynamics of the nodes’ mobility. In mobile applications, where low computational complexity is important, pseudo-optimal estimations are preferred, as they do not require such information. In this case, the maximum likelihood estimator (MLE) is often used. In this paper, we propose an efficient pseudo-optimal log-power based distance estimation method using RSS under lognormal shadowing, that improves the MLE. It does not require a priori knowledge either of the movement dynamics or of the variance of the noise. The method is based on adaptively minimizing the variance of the prediction error, using a random walk model with correlated increments. It is analytically demonstrated that the distance estimation error variance of the proposed method improves the MLE in both the static and mobile cases. We use a simulated velocity model example to compare its performance with other algorithms in this group, such as the linear mean square filter and the Gauss–Newton search.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/52035
Milocco, Ruben Horacio; Boumerdassi, Selma; An efficient adaptive method for estimating the distance between mobile sensors; Springer; Wireless Networks; 21; 8; 11-2015; 2519-2529
1022-0038
1572-8196
CONICET Digital
CONICET
url http://hdl.handle.net/11336/52035
identifier_str_mv Milocco, Ruben Horacio; Boumerdassi, Selma; An efficient adaptive method for estimating the distance between mobile sensors; Springer; Wireless Networks; 21; 8; 11-2015; 2519-2529
1022-0038
1572-8196
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11276-015-0930-3
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11276-015-0930-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781665799569408
score 12.982451