Tackling the complexity of nonalcoholic steatohepatitis treatment: challenges and opportunities based on systems biology and machine learning approaches

Autores
Pirola, Carlos José; Sookoian, Silvia Cristina
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nonalcoholic fatty liver disease (NAFLD) is regarded as the most frequent cause of chronic liver damage (1,2). The natural history of the disease presents a complex scenario of potential progression into severe clinical outcomes, including nonalcoholic steatohepatitis (NASH), NASHfibrosis, cirrhosis, and hepatocellular carcinoma (1,2). In addition, NAFLD is closely associated with comorbidities of the metabolic syndrome (MetS), including type 2 diabetes, obesity, arterial hypertension, and dyslipidemia, which together aggravate the morbidity and mortality associated with the disease.
Fil: Pirola, Carlos José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina
Fil: Sookoian, Silvia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina
Materia
NASH
TREATMENT
FIBROSIS
SYSTEMS BIOLOGY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/86590

id CONICETDig_3265a2bc9d34f1dd958505f38a7307a1
oai_identifier_str oai:ri.conicet.gov.ar:11336/86590
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Tackling the complexity of nonalcoholic steatohepatitis treatment: challenges and opportunities based on systems biology and machine learning approachesPirola, Carlos JoséSookoian, Silvia CristinaNASHTREATMENTFIBROSISSYSTEMS BIOLOGYhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3https://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3Nonalcoholic fatty liver disease (NAFLD) is regarded as the most frequent cause of chronic liver damage (1,2). The natural history of the disease presents a complex scenario of potential progression into severe clinical outcomes, including nonalcoholic steatohepatitis (NASH), NASHfibrosis, cirrhosis, and hepatocellular carcinoma (1,2). In addition, NAFLD is closely associated with comorbidities of the metabolic syndrome (MetS), including type 2 diabetes, obesity, arterial hypertension, and dyslipidemia, which together aggravate the morbidity and mortality associated with the disease.Fil: Pirola, Carlos José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Sookoian, Silvia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaAME Publishing Company2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86590Pirola, Carlos José; Sookoian, Silvia Cristina; Tackling the complexity of nonalcoholic steatohepatitis treatment: challenges and opportunities based on systems biology and machine learning approaches; AME Publishing Company; HepatoBiliary Surgery and Nutrition; 7; 6; 12-2018; 495-4982304-389XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.21037/hbsn.2018.09.06info:eu-repo/semantics/altIdentifier/url/http://hbsn.amegroups.com/article/view/21886/21949info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:46Zoai:ri.conicet.gov.ar:11336/86590instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:46.679CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Tackling the complexity of nonalcoholic steatohepatitis treatment: challenges and opportunities based on systems biology and machine learning approaches
title Tackling the complexity of nonalcoholic steatohepatitis treatment: challenges and opportunities based on systems biology and machine learning approaches
spellingShingle Tackling the complexity of nonalcoholic steatohepatitis treatment: challenges and opportunities based on systems biology and machine learning approaches
Pirola, Carlos José
NASH
TREATMENT
FIBROSIS
SYSTEMS BIOLOGY
title_short Tackling the complexity of nonalcoholic steatohepatitis treatment: challenges and opportunities based on systems biology and machine learning approaches
title_full Tackling the complexity of nonalcoholic steatohepatitis treatment: challenges and opportunities based on systems biology and machine learning approaches
title_fullStr Tackling the complexity of nonalcoholic steatohepatitis treatment: challenges and opportunities based on systems biology and machine learning approaches
title_full_unstemmed Tackling the complexity of nonalcoholic steatohepatitis treatment: challenges and opportunities based on systems biology and machine learning approaches
title_sort Tackling the complexity of nonalcoholic steatohepatitis treatment: challenges and opportunities based on systems biology and machine learning approaches
dc.creator.none.fl_str_mv Pirola, Carlos José
Sookoian, Silvia Cristina
author Pirola, Carlos José
author_facet Pirola, Carlos José
Sookoian, Silvia Cristina
author_role author
author2 Sookoian, Silvia Cristina
author2_role author
dc.subject.none.fl_str_mv NASH
TREATMENT
FIBROSIS
SYSTEMS BIOLOGY
topic NASH
TREATMENT
FIBROSIS
SYSTEMS BIOLOGY
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
https://purl.org/becyt/ford/3.2
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Nonalcoholic fatty liver disease (NAFLD) is regarded as the most frequent cause of chronic liver damage (1,2). The natural history of the disease presents a complex scenario of potential progression into severe clinical outcomes, including nonalcoholic steatohepatitis (NASH), NASHfibrosis, cirrhosis, and hepatocellular carcinoma (1,2). In addition, NAFLD is closely associated with comorbidities of the metabolic syndrome (MetS), including type 2 diabetes, obesity, arterial hypertension, and dyslipidemia, which together aggravate the morbidity and mortality associated with the disease.
Fil: Pirola, Carlos José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina
Fil: Sookoian, Silvia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina
description Nonalcoholic fatty liver disease (NAFLD) is regarded as the most frequent cause of chronic liver damage (1,2). The natural history of the disease presents a complex scenario of potential progression into severe clinical outcomes, including nonalcoholic steatohepatitis (NASH), NASHfibrosis, cirrhosis, and hepatocellular carcinoma (1,2). In addition, NAFLD is closely associated with comorbidities of the metabolic syndrome (MetS), including type 2 diabetes, obesity, arterial hypertension, and dyslipidemia, which together aggravate the morbidity and mortality associated with the disease.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/86590
Pirola, Carlos José; Sookoian, Silvia Cristina; Tackling the complexity of nonalcoholic steatohepatitis treatment: challenges and opportunities based on systems biology and machine learning approaches; AME Publishing Company; HepatoBiliary Surgery and Nutrition; 7; 6; 12-2018; 495-498
2304-389X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/86590
identifier_str_mv Pirola, Carlos José; Sookoian, Silvia Cristina; Tackling the complexity of nonalcoholic steatohepatitis treatment: challenges and opportunities based on systems biology and machine learning approaches; AME Publishing Company; HepatoBiliary Surgery and Nutrition; 7; 6; 12-2018; 495-498
2304-389X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.21037/hbsn.2018.09.06
info:eu-repo/semantics/altIdentifier/url/http://hbsn.amegroups.com/article/view/21886/21949
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv AME Publishing Company
publisher.none.fl_str_mv AME Publishing Company
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269600394248192
score 13.13397