Nonhomogeneous Euclidean first-passage percolation and distance learning

Autores
Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Sapienza, Facundo
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Consider an i.i.d. sample from an unknown density function supported on an unknown manifold embedded in a high dimensional Euclidean space. We tackle the problem of learning a distance between points, able to capture both the geometry of the manifold and the underlying density. We define such a sample distance and prove the convergence, as the sample size goes to infinity, to a macroscopic one that we call Fermat distance as it minimizes a path functional, resembling Fermat principle in optics. The proof boils down to the study of geodesics in Euclidean first-passage percolation for nonhomogeneous Poisson point processes.
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
Fil: Jonckheere, Matthieu Thimothy Samson. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: Sapienza, Facundo. No especifíca;
Materia
DISTANCE LEARNING
EUCLIDEAN FIRST-PASSAGE PERCOLATION
NONHOMOGENEOUS POINT PROCESSES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/170790

id CONICETDig_3217fd1eb0b3a978c9d9209783382f60
oai_identifier_str oai:ri.conicet.gov.ar:11336/170790
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nonhomogeneous Euclidean first-passage percolation and distance learningGroisman, Pablo JoseJonckheere, Matthieu Thimothy SamsonSapienza, FacundoDISTANCE LEARNINGEUCLIDEAN FIRST-PASSAGE PERCOLATIONNONHOMOGENEOUS POINT PROCESSEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Consider an i.i.d. sample from an unknown density function supported on an unknown manifold embedded in a high dimensional Euclidean space. We tackle the problem of learning a distance between points, able to capture both the geometry of the manifold and the underlying density. We define such a sample distance and prove the convergence, as the sample size goes to infinity, to a macroscopic one that we call Fermat distance as it minimizes a path functional, resembling Fermat principle in optics. The proof boils down to the study of geodesics in Euclidean first-passage percolation for nonhomogeneous Poisson point processes.Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Jonckheere, Matthieu Thimothy Samson. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaFil: Sapienza, Facundo. No especifíca;Institute of Mathematical Statistics2022-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/170790Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Sapienza, Facundo; Nonhomogeneous Euclidean first-passage percolation and distance learning; Institute of Mathematical Statistics; Bernoulli - Mathematical Statistics And Probability; 28; 1; 2-2022; 255-2761350-72651573-9759CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/bernoulli/volume-28/issue-1/Nonhomogeneous-Euclidean-first-passage-percolation-and-distance-learning/10.3150/21-BEJ1341.shortinfo:eu-repo/semantics/altIdentifier/doi/10.3150/21-BEJ1341info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1810.09398info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:49Zoai:ri.conicet.gov.ar:11336/170790instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:49.722CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nonhomogeneous Euclidean first-passage percolation and distance learning
title Nonhomogeneous Euclidean first-passage percolation and distance learning
spellingShingle Nonhomogeneous Euclidean first-passage percolation and distance learning
Groisman, Pablo Jose
DISTANCE LEARNING
EUCLIDEAN FIRST-PASSAGE PERCOLATION
NONHOMOGENEOUS POINT PROCESSES
title_short Nonhomogeneous Euclidean first-passage percolation and distance learning
title_full Nonhomogeneous Euclidean first-passage percolation and distance learning
title_fullStr Nonhomogeneous Euclidean first-passage percolation and distance learning
title_full_unstemmed Nonhomogeneous Euclidean first-passage percolation and distance learning
title_sort Nonhomogeneous Euclidean first-passage percolation and distance learning
dc.creator.none.fl_str_mv Groisman, Pablo Jose
Jonckheere, Matthieu Thimothy Samson
Sapienza, Facundo
author Groisman, Pablo Jose
author_facet Groisman, Pablo Jose
Jonckheere, Matthieu Thimothy Samson
Sapienza, Facundo
author_role author
author2 Jonckheere, Matthieu Thimothy Samson
Sapienza, Facundo
author2_role author
author
dc.subject.none.fl_str_mv DISTANCE LEARNING
EUCLIDEAN FIRST-PASSAGE PERCOLATION
NONHOMOGENEOUS POINT PROCESSES
topic DISTANCE LEARNING
EUCLIDEAN FIRST-PASSAGE PERCOLATION
NONHOMOGENEOUS POINT PROCESSES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Consider an i.i.d. sample from an unknown density function supported on an unknown manifold embedded in a high dimensional Euclidean space. We tackle the problem of learning a distance between points, able to capture both the geometry of the manifold and the underlying density. We define such a sample distance and prove the convergence, as the sample size goes to infinity, to a macroscopic one that we call Fermat distance as it minimizes a path functional, resembling Fermat principle in optics. The proof boils down to the study of geodesics in Euclidean first-passage percolation for nonhomogeneous Poisson point processes.
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
Fil: Jonckheere, Matthieu Thimothy Samson. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: Sapienza, Facundo. No especifíca;
description Consider an i.i.d. sample from an unknown density function supported on an unknown manifold embedded in a high dimensional Euclidean space. We tackle the problem of learning a distance between points, able to capture both the geometry of the manifold and the underlying density. We define such a sample distance and prove the convergence, as the sample size goes to infinity, to a macroscopic one that we call Fermat distance as it minimizes a path functional, resembling Fermat principle in optics. The proof boils down to the study of geodesics in Euclidean first-passage percolation for nonhomogeneous Poisson point processes.
publishDate 2022
dc.date.none.fl_str_mv 2022-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/170790
Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Sapienza, Facundo; Nonhomogeneous Euclidean first-passage percolation and distance learning; Institute of Mathematical Statistics; Bernoulli - Mathematical Statistics And Probability; 28; 1; 2-2022; 255-276
1350-7265
1573-9759
CONICET Digital
CONICET
url http://hdl.handle.net/11336/170790
identifier_str_mv Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Sapienza, Facundo; Nonhomogeneous Euclidean first-passage percolation and distance learning; Institute of Mathematical Statistics; Bernoulli - Mathematical Statistics And Probability; 28; 1; 2-2022; 255-276
1350-7265
1573-9759
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/bernoulli/volume-28/issue-1/Nonhomogeneous-Euclidean-first-passage-percolation-and-distance-learning/10.3150/21-BEJ1341.short
info:eu-repo/semantics/altIdentifier/doi/10.3150/21-BEJ1341
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1810.09398
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Mathematical Statistics
publisher.none.fl_str_mv Institute of Mathematical Statistics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614365213360128
score 13.070432