A deep learning approach to halo merger tree construction
- Autores
- Robles, Sandra; Gómez, Jonathan S; Ramírez Rivera, Adín; Padilla, Nelson David; Dujovne, Diego
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A key ingredient for semi-analytic models of galaxy formation is the mass assembly history of haloes, encoded in a tree structure. The most commonly used method to construct halo merger histories is based on the outcomes of high-resolution, computationally intensive N-body simulations. We show that machine learning (ML) techniques, in particular Generative Adversarial Networks (GANs), are a promising new tool to tackle this problem with a modest computational cost and retaining the best features of merger trees from simulations. We train our GAN model with a limited sample of merger trees from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulation suite, constructed using two halo finders-tree builder algorithms: SUBFIND-D-TREES and ROCKSTAR-ConsistentTrees. Our GAN model successfully learns to generate well-constructed merger tree structures with high temporal resolution, and to reproduce the statistical features of the sample of merger trees used for training, when considering up to three variables in the training process. These inputs, whose representations are also learned by our GAN model, are mass of the halo progenitors and the final descendant, progenitor type (main halo or satellite), and distance of a progenitor to that in the main branch. The inclusion of the latter two inputs greatly improves the final learned representation of the halo mass growth history, especially for SUBFIND-like ML trees. When comparing equally sized samples of ML merger trees with those of the EAGLE simulation, we find better agreement for SUBFIND-like ML trees. Finally, our GAN-based framework can be utilized to construct merger histories of low-and intermediate-mass haloes, the most abundant in cosmological simulations.
Fil: Robles, Sandra. Universidad Autónoma de Madrid; España. Kings College London (kcl); . University of Melbourne; Australia
Fil: Gómez, Jonathan S. Universidad Católica de Chile; Chile. Universidad Autónoma de Madrid; España. Pontificia Universidad Católica de Chile; Chile
Fil: Ramírez Rivera, Adín. University of Oslo; Noruega
Fil: Padilla, Nelson David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Dujovne, Diego. Universidad Diego Portales; Chile - Materia
-
(COSMOLOGY:) DARK MATTER
GALAXIES: EVOLUTION
GALAXIES: FORMATION
GALAXIES: HALOES
METHODS: NUMERICAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/202767
Ver los metadatos del registro completo
id |
CONICETDig_31d29e3cb52a56f744865b390c706179 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/202767 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A deep learning approach to halo merger tree constructionRobles, SandraGómez, Jonathan SRamírez Rivera, AdínPadilla, Nelson DavidDujovne, Diego(COSMOLOGY:) DARK MATTERGALAXIES: EVOLUTIONGALAXIES: FORMATIONGALAXIES: HALOESMETHODS: NUMERICALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A key ingredient for semi-analytic models of galaxy formation is the mass assembly history of haloes, encoded in a tree structure. The most commonly used method to construct halo merger histories is based on the outcomes of high-resolution, computationally intensive N-body simulations. We show that machine learning (ML) techniques, in particular Generative Adversarial Networks (GANs), are a promising new tool to tackle this problem with a modest computational cost and retaining the best features of merger trees from simulations. We train our GAN model with a limited sample of merger trees from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulation suite, constructed using two halo finders-tree builder algorithms: SUBFIND-D-TREES and ROCKSTAR-ConsistentTrees. Our GAN model successfully learns to generate well-constructed merger tree structures with high temporal resolution, and to reproduce the statistical features of the sample of merger trees used for training, when considering up to three variables in the training process. These inputs, whose representations are also learned by our GAN model, are mass of the halo progenitors and the final descendant, progenitor type (main halo or satellite), and distance of a progenitor to that in the main branch. The inclusion of the latter two inputs greatly improves the final learned representation of the halo mass growth history, especially for SUBFIND-like ML trees. When comparing equally sized samples of ML merger trees with those of the EAGLE simulation, we find better agreement for SUBFIND-like ML trees. Finally, our GAN-based framework can be utilized to construct merger histories of low-and intermediate-mass haloes, the most abundant in cosmological simulations.Fil: Robles, Sandra. Universidad Autónoma de Madrid; España. Kings College London (kcl); . University of Melbourne; AustraliaFil: Gómez, Jonathan S. Universidad Católica de Chile; Chile. Universidad Autónoma de Madrid; España. Pontificia Universidad Católica de Chile; ChileFil: Ramírez Rivera, Adín. University of Oslo; NoruegaFil: Padilla, Nelson David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Dujovne, Diego. Universidad Diego Portales; ChileOxford Univ Press Inc2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/202767Robles, Sandra; Gómez, Jonathan S; Ramírez Rivera, Adín; Padilla, Nelson David; Dujovne, Diego; A deep learning approach to halo merger tree construction; Oxford Univ Press Inc; Monthly Notices of the Royal Astronomical Society; 514; 3; 8-2022; 3692-37080035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stac1569info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/514/3/3692/6604886info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2205.15988info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:55Zoai:ri.conicet.gov.ar:11336/202767instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:56.062CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A deep learning approach to halo merger tree construction |
title |
A deep learning approach to halo merger tree construction |
spellingShingle |
A deep learning approach to halo merger tree construction Robles, Sandra (COSMOLOGY:) DARK MATTER GALAXIES: EVOLUTION GALAXIES: FORMATION GALAXIES: HALOES METHODS: NUMERICAL |
title_short |
A deep learning approach to halo merger tree construction |
title_full |
A deep learning approach to halo merger tree construction |
title_fullStr |
A deep learning approach to halo merger tree construction |
title_full_unstemmed |
A deep learning approach to halo merger tree construction |
title_sort |
A deep learning approach to halo merger tree construction |
dc.creator.none.fl_str_mv |
Robles, Sandra Gómez, Jonathan S Ramírez Rivera, Adín Padilla, Nelson David Dujovne, Diego |
author |
Robles, Sandra |
author_facet |
Robles, Sandra Gómez, Jonathan S Ramírez Rivera, Adín Padilla, Nelson David Dujovne, Diego |
author_role |
author |
author2 |
Gómez, Jonathan S Ramírez Rivera, Adín Padilla, Nelson David Dujovne, Diego |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
(COSMOLOGY:) DARK MATTER GALAXIES: EVOLUTION GALAXIES: FORMATION GALAXIES: HALOES METHODS: NUMERICAL |
topic |
(COSMOLOGY:) DARK MATTER GALAXIES: EVOLUTION GALAXIES: FORMATION GALAXIES: HALOES METHODS: NUMERICAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A key ingredient for semi-analytic models of galaxy formation is the mass assembly history of haloes, encoded in a tree structure. The most commonly used method to construct halo merger histories is based on the outcomes of high-resolution, computationally intensive N-body simulations. We show that machine learning (ML) techniques, in particular Generative Adversarial Networks (GANs), are a promising new tool to tackle this problem with a modest computational cost and retaining the best features of merger trees from simulations. We train our GAN model with a limited sample of merger trees from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulation suite, constructed using two halo finders-tree builder algorithms: SUBFIND-D-TREES and ROCKSTAR-ConsistentTrees. Our GAN model successfully learns to generate well-constructed merger tree structures with high temporal resolution, and to reproduce the statistical features of the sample of merger trees used for training, when considering up to three variables in the training process. These inputs, whose representations are also learned by our GAN model, are mass of the halo progenitors and the final descendant, progenitor type (main halo or satellite), and distance of a progenitor to that in the main branch. The inclusion of the latter two inputs greatly improves the final learned representation of the halo mass growth history, especially for SUBFIND-like ML trees. When comparing equally sized samples of ML merger trees with those of the EAGLE simulation, we find better agreement for SUBFIND-like ML trees. Finally, our GAN-based framework can be utilized to construct merger histories of low-and intermediate-mass haloes, the most abundant in cosmological simulations. Fil: Robles, Sandra. Universidad Autónoma de Madrid; España. Kings College London (kcl); . University of Melbourne; Australia Fil: Gómez, Jonathan S. Universidad Católica de Chile; Chile. Universidad Autónoma de Madrid; España. Pontificia Universidad Católica de Chile; Chile Fil: Ramírez Rivera, Adín. University of Oslo; Noruega Fil: Padilla, Nelson David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Dujovne, Diego. Universidad Diego Portales; Chile |
description |
A key ingredient for semi-analytic models of galaxy formation is the mass assembly history of haloes, encoded in a tree structure. The most commonly used method to construct halo merger histories is based on the outcomes of high-resolution, computationally intensive N-body simulations. We show that machine learning (ML) techniques, in particular Generative Adversarial Networks (GANs), are a promising new tool to tackle this problem with a modest computational cost and retaining the best features of merger trees from simulations. We train our GAN model with a limited sample of merger trees from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulation suite, constructed using two halo finders-tree builder algorithms: SUBFIND-D-TREES and ROCKSTAR-ConsistentTrees. Our GAN model successfully learns to generate well-constructed merger tree structures with high temporal resolution, and to reproduce the statistical features of the sample of merger trees used for training, when considering up to three variables in the training process. These inputs, whose representations are also learned by our GAN model, are mass of the halo progenitors and the final descendant, progenitor type (main halo or satellite), and distance of a progenitor to that in the main branch. The inclusion of the latter two inputs greatly improves the final learned representation of the halo mass growth history, especially for SUBFIND-like ML trees. When comparing equally sized samples of ML merger trees with those of the EAGLE simulation, we find better agreement for SUBFIND-like ML trees. Finally, our GAN-based framework can be utilized to construct merger histories of low-and intermediate-mass haloes, the most abundant in cosmological simulations. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/202767 Robles, Sandra; Gómez, Jonathan S; Ramírez Rivera, Adín; Padilla, Nelson David; Dujovne, Diego; A deep learning approach to halo merger tree construction; Oxford Univ Press Inc; Monthly Notices of the Royal Astronomical Society; 514; 3; 8-2022; 3692-3708 0035-8711 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/202767 |
identifier_str_mv |
Robles, Sandra; Gómez, Jonathan S; Ramírez Rivera, Adín; Padilla, Nelson David; Dujovne, Diego; A deep learning approach to halo merger tree construction; Oxford Univ Press Inc; Monthly Notices of the Royal Astronomical Society; 514; 3; 8-2022; 3692-3708 0035-8711 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stac1569 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/514/3/3692/6604886 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2205.15988 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford Univ Press Inc |
publisher.none.fl_str_mv |
Oxford Univ Press Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614400679346176 |
score |
13.070432 |