A deep learning approach to halo merger tree construction

Autores
Robles, Sandra; Gómez, Jonathan S; Ramírez Rivera, Adín; Padilla, Nelson David; Dujovne, Diego
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A key ingredient for semi-analytic models of galaxy formation is the mass assembly history of haloes, encoded in a tree structure. The most commonly used method to construct halo merger histories is based on the outcomes of high-resolution, computationally intensive N-body simulations. We show that machine learning (ML) techniques, in particular Generative Adversarial Networks (GANs), are a promising new tool to tackle this problem with a modest computational cost and retaining the best features of merger trees from simulations. We train our GAN model with a limited sample of merger trees from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulation suite, constructed using two halo finders-tree builder algorithms: SUBFIND-D-TREES and ROCKSTAR-ConsistentTrees. Our GAN model successfully learns to generate well-constructed merger tree structures with high temporal resolution, and to reproduce the statistical features of the sample of merger trees used for training, when considering up to three variables in the training process. These inputs, whose representations are also learned by our GAN model, are mass of the halo progenitors and the final descendant, progenitor type (main halo or satellite), and distance of a progenitor to that in the main branch. The inclusion of the latter two inputs greatly improves the final learned representation of the halo mass growth history, especially for SUBFIND-like ML trees. When comparing equally sized samples of ML merger trees with those of the EAGLE simulation, we find better agreement for SUBFIND-like ML trees. Finally, our GAN-based framework can be utilized to construct merger histories of low-and intermediate-mass haloes, the most abundant in cosmological simulations.
Fil: Robles, Sandra. Universidad Autónoma de Madrid; España. Kings College London (kcl); . University of Melbourne; Australia
Fil: Gómez, Jonathan S. Universidad Católica de Chile; Chile. Universidad Autónoma de Madrid; España. Pontificia Universidad Católica de Chile; Chile
Fil: Ramírez Rivera, Adín. University of Oslo; Noruega
Fil: Padilla, Nelson David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Dujovne, Diego. Universidad Diego Portales; Chile
Materia
(COSMOLOGY:) DARK MATTER
GALAXIES: EVOLUTION
GALAXIES: FORMATION
GALAXIES: HALOES
METHODS: NUMERICAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/202767

id CONICETDig_31d29e3cb52a56f744865b390c706179
oai_identifier_str oai:ri.conicet.gov.ar:11336/202767
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A deep learning approach to halo merger tree constructionRobles, SandraGómez, Jonathan SRamírez Rivera, AdínPadilla, Nelson DavidDujovne, Diego(COSMOLOGY:) DARK MATTERGALAXIES: EVOLUTIONGALAXIES: FORMATIONGALAXIES: HALOESMETHODS: NUMERICALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A key ingredient for semi-analytic models of galaxy formation is the mass assembly history of haloes, encoded in a tree structure. The most commonly used method to construct halo merger histories is based on the outcomes of high-resolution, computationally intensive N-body simulations. We show that machine learning (ML) techniques, in particular Generative Adversarial Networks (GANs), are a promising new tool to tackle this problem with a modest computational cost and retaining the best features of merger trees from simulations. We train our GAN model with a limited sample of merger trees from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulation suite, constructed using two halo finders-tree builder algorithms: SUBFIND-D-TREES and ROCKSTAR-ConsistentTrees. Our GAN model successfully learns to generate well-constructed merger tree structures with high temporal resolution, and to reproduce the statistical features of the sample of merger trees used for training, when considering up to three variables in the training process. These inputs, whose representations are also learned by our GAN model, are mass of the halo progenitors and the final descendant, progenitor type (main halo or satellite), and distance of a progenitor to that in the main branch. The inclusion of the latter two inputs greatly improves the final learned representation of the halo mass growth history, especially for SUBFIND-like ML trees. When comparing equally sized samples of ML merger trees with those of the EAGLE simulation, we find better agreement for SUBFIND-like ML trees. Finally, our GAN-based framework can be utilized to construct merger histories of low-and intermediate-mass haloes, the most abundant in cosmological simulations.Fil: Robles, Sandra. Universidad Autónoma de Madrid; España. Kings College London (kcl); . University of Melbourne; AustraliaFil: Gómez, Jonathan S. Universidad Católica de Chile; Chile. Universidad Autónoma de Madrid; España. Pontificia Universidad Católica de Chile; ChileFil: Ramírez Rivera, Adín. University of Oslo; NoruegaFil: Padilla, Nelson David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Dujovne, Diego. Universidad Diego Portales; ChileOxford Univ Press Inc2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/202767Robles, Sandra; Gómez, Jonathan S; Ramírez Rivera, Adín; Padilla, Nelson David; Dujovne, Diego; A deep learning approach to halo merger tree construction; Oxford Univ Press Inc; Monthly Notices of the Royal Astronomical Society; 514; 3; 8-2022; 3692-37080035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stac1569info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/514/3/3692/6604886info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2205.15988info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:55Zoai:ri.conicet.gov.ar:11336/202767instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:56.062CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A deep learning approach to halo merger tree construction
title A deep learning approach to halo merger tree construction
spellingShingle A deep learning approach to halo merger tree construction
Robles, Sandra
(COSMOLOGY:) DARK MATTER
GALAXIES: EVOLUTION
GALAXIES: FORMATION
GALAXIES: HALOES
METHODS: NUMERICAL
title_short A deep learning approach to halo merger tree construction
title_full A deep learning approach to halo merger tree construction
title_fullStr A deep learning approach to halo merger tree construction
title_full_unstemmed A deep learning approach to halo merger tree construction
title_sort A deep learning approach to halo merger tree construction
dc.creator.none.fl_str_mv Robles, Sandra
Gómez, Jonathan S
Ramírez Rivera, Adín
Padilla, Nelson David
Dujovne, Diego
author Robles, Sandra
author_facet Robles, Sandra
Gómez, Jonathan S
Ramírez Rivera, Adín
Padilla, Nelson David
Dujovne, Diego
author_role author
author2 Gómez, Jonathan S
Ramírez Rivera, Adín
Padilla, Nelson David
Dujovne, Diego
author2_role author
author
author
author
dc.subject.none.fl_str_mv (COSMOLOGY:) DARK MATTER
GALAXIES: EVOLUTION
GALAXIES: FORMATION
GALAXIES: HALOES
METHODS: NUMERICAL
topic (COSMOLOGY:) DARK MATTER
GALAXIES: EVOLUTION
GALAXIES: FORMATION
GALAXIES: HALOES
METHODS: NUMERICAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A key ingredient for semi-analytic models of galaxy formation is the mass assembly history of haloes, encoded in a tree structure. The most commonly used method to construct halo merger histories is based on the outcomes of high-resolution, computationally intensive N-body simulations. We show that machine learning (ML) techniques, in particular Generative Adversarial Networks (GANs), are a promising new tool to tackle this problem with a modest computational cost and retaining the best features of merger trees from simulations. We train our GAN model with a limited sample of merger trees from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulation suite, constructed using two halo finders-tree builder algorithms: SUBFIND-D-TREES and ROCKSTAR-ConsistentTrees. Our GAN model successfully learns to generate well-constructed merger tree structures with high temporal resolution, and to reproduce the statistical features of the sample of merger trees used for training, when considering up to three variables in the training process. These inputs, whose representations are also learned by our GAN model, are mass of the halo progenitors and the final descendant, progenitor type (main halo or satellite), and distance of a progenitor to that in the main branch. The inclusion of the latter two inputs greatly improves the final learned representation of the halo mass growth history, especially for SUBFIND-like ML trees. When comparing equally sized samples of ML merger trees with those of the EAGLE simulation, we find better agreement for SUBFIND-like ML trees. Finally, our GAN-based framework can be utilized to construct merger histories of low-and intermediate-mass haloes, the most abundant in cosmological simulations.
Fil: Robles, Sandra. Universidad Autónoma de Madrid; España. Kings College London (kcl); . University of Melbourne; Australia
Fil: Gómez, Jonathan S. Universidad Católica de Chile; Chile. Universidad Autónoma de Madrid; España. Pontificia Universidad Católica de Chile; Chile
Fil: Ramírez Rivera, Adín. University of Oslo; Noruega
Fil: Padilla, Nelson David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Dujovne, Diego. Universidad Diego Portales; Chile
description A key ingredient for semi-analytic models of galaxy formation is the mass assembly history of haloes, encoded in a tree structure. The most commonly used method to construct halo merger histories is based on the outcomes of high-resolution, computationally intensive N-body simulations. We show that machine learning (ML) techniques, in particular Generative Adversarial Networks (GANs), are a promising new tool to tackle this problem with a modest computational cost and retaining the best features of merger trees from simulations. We train our GAN model with a limited sample of merger trees from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulation suite, constructed using two halo finders-tree builder algorithms: SUBFIND-D-TREES and ROCKSTAR-ConsistentTrees. Our GAN model successfully learns to generate well-constructed merger tree structures with high temporal resolution, and to reproduce the statistical features of the sample of merger trees used for training, when considering up to three variables in the training process. These inputs, whose representations are also learned by our GAN model, are mass of the halo progenitors and the final descendant, progenitor type (main halo or satellite), and distance of a progenitor to that in the main branch. The inclusion of the latter two inputs greatly improves the final learned representation of the halo mass growth history, especially for SUBFIND-like ML trees. When comparing equally sized samples of ML merger trees with those of the EAGLE simulation, we find better agreement for SUBFIND-like ML trees. Finally, our GAN-based framework can be utilized to construct merger histories of low-and intermediate-mass haloes, the most abundant in cosmological simulations.
publishDate 2022
dc.date.none.fl_str_mv 2022-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/202767
Robles, Sandra; Gómez, Jonathan S; Ramírez Rivera, Adín; Padilla, Nelson David; Dujovne, Diego; A deep learning approach to halo merger tree construction; Oxford Univ Press Inc; Monthly Notices of the Royal Astronomical Society; 514; 3; 8-2022; 3692-3708
0035-8711
CONICET Digital
CONICET
url http://hdl.handle.net/11336/202767
identifier_str_mv Robles, Sandra; Gómez, Jonathan S; Ramírez Rivera, Adín; Padilla, Nelson David; Dujovne, Diego; A deep learning approach to halo merger tree construction; Oxford Univ Press Inc; Monthly Notices of the Royal Astronomical Society; 514; 3; 8-2022; 3692-3708
0035-8711
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stac1569
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/514/3/3692/6604886
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2205.15988
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford Univ Press Inc
publisher.none.fl_str_mv Oxford Univ Press Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614400679346176
score 13.070432