Estimating COVID-19 cases and outbreaks on-stream through phone calls
- Autores
- Alvarez, Ezequiel; Obando, Daniela; Crespo, Sebastian; Garcia, Enio; Kreplak, Nicolas; Marsico, Franco
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- One of the main problems in controlling COVID-19 epidemic spread is the delay in confirming cases. Having information on changes in the epidemic evolution or outbreaks rise before laboratory-confirmation is crucial in decision making for Public Health policies. We present an algorithm to estimate on-stream the number of COVID-19 cases using the data from telephone calls to a COVID-line. By modelling the calls as background (proportional to population) plus signal (proportional to infected), we fit the calls in Province of Buenos Aires (Argentina) with coefficient of determination R 2 > 0.85. This result allows us to estimate the number of cases given the number of calls from a specific district, days before the laboratory results are available. We validate the algorithm with real data. We show how to use the algorithm to track on-stream the epidemic, and present the Early Outbreak Alarm to detect outbreaks in advance of laboratory results. One key point in the developed algorithm is a detailed track of the uncertainties in the estimations, since the alarm uses the significance of the observables as a main indicator to detect an anomaly. We present the details of the explicit example in Villa Azul (Quilmes) where this tool resulted crucial to control an outbreak on time. The presented tools have been designed in urgency with the available data at the time of the development, and therefore have their limitations which we describe and discuss. We consider possible improvements on the tools, many of which are currently under development.
Fil: Alvarez, Ezequiel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias Fisicas. - Universidad Nacional de San Martin. Instituto de Ciencias Fisicas.; Argentina
Fil: Obando, Daniela. Provincia de Buenos Aires. Ministerio de Salud; Argentina
Fil: Crespo, Sebastian. Provincia de Buenos Aires. Ministerio de Salud; Argentina
Fil: Garcia, Enio. Provincia de Buenos Aires. Ministerio de Salud; Argentina
Fil: Kreplak, Nicolas. Provincia de Buenos Aires. Ministerio de Salud; Argentina
Fil: Marsico, Franco. Provincia de Buenos Aires. Ministerio de Salud; Argentina - Materia
-
CORRELATION
COVID-19
EARLY-ALARM, LIVE-TRACKING
PHONE CALLS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/133854
Ver los metadatos del registro completo
id |
CONICETDig_3035c235fd8045b381631097938a7fa0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/133854 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Estimating COVID-19 cases and outbreaks on-stream through phone callsAlvarez, EzequielObando, DanielaCrespo, SebastianGarcia, EnioKreplak, NicolasMarsico, FrancoCORRELATIONCOVID-19EARLY-ALARM, LIVE-TRACKINGPHONE CALLShttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3One of the main problems in controlling COVID-19 epidemic spread is the delay in confirming cases. Having information on changes in the epidemic evolution or outbreaks rise before laboratory-confirmation is crucial in decision making for Public Health policies. We present an algorithm to estimate on-stream the number of COVID-19 cases using the data from telephone calls to a COVID-line. By modelling the calls as background (proportional to population) plus signal (proportional to infected), we fit the calls in Province of Buenos Aires (Argentina) with coefficient of determination R 2 > 0.85. This result allows us to estimate the number of cases given the number of calls from a specific district, days before the laboratory results are available. We validate the algorithm with real data. We show how to use the algorithm to track on-stream the epidemic, and present the Early Outbreak Alarm to detect outbreaks in advance of laboratory results. One key point in the developed algorithm is a detailed track of the uncertainties in the estimations, since the alarm uses the significance of the observables as a main indicator to detect an anomaly. We present the details of the explicit example in Villa Azul (Quilmes) where this tool resulted crucial to control an outbreak on time. The presented tools have been designed in urgency with the available data at the time of the development, and therefore have their limitations which we describe and discuss. We consider possible improvements on the tools, many of which are currently under development.Fil: Alvarez, Ezequiel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias Fisicas. - Universidad Nacional de San Martin. Instituto de Ciencias Fisicas.; ArgentinaFil: Obando, Daniela. Provincia de Buenos Aires. Ministerio de Salud; ArgentinaFil: Crespo, Sebastian. Provincia de Buenos Aires. Ministerio de Salud; ArgentinaFil: Garcia, Enio. Provincia de Buenos Aires. Ministerio de Salud; ArgentinaFil: Kreplak, Nicolas. Provincia de Buenos Aires. Ministerio de Salud; ArgentinaFil: Marsico, Franco. Provincia de Buenos Aires. Ministerio de Salud; ArgentinaThe Royal Society2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/133854Alvarez, Ezequiel; Obando, Daniela; Crespo, Sebastian; Garcia, Enio; Kreplak, Nicolas; et al.; Estimating COVID-19 cases and outbreaks on-stream through phone calls; The Royal Society; Royal Society Open Science; 8; 3; 3-2021; 1-112054-5703CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsos.202312info:eu-repo/semantics/altIdentifier/doi/10.1098/rsos.202312info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:05:01Zoai:ri.conicet.gov.ar:11336/133854instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:05:01.822CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Estimating COVID-19 cases and outbreaks on-stream through phone calls |
title |
Estimating COVID-19 cases and outbreaks on-stream through phone calls |
spellingShingle |
Estimating COVID-19 cases and outbreaks on-stream through phone calls Alvarez, Ezequiel CORRELATION COVID-19 EARLY-ALARM, LIVE-TRACKING PHONE CALLS |
title_short |
Estimating COVID-19 cases and outbreaks on-stream through phone calls |
title_full |
Estimating COVID-19 cases and outbreaks on-stream through phone calls |
title_fullStr |
Estimating COVID-19 cases and outbreaks on-stream through phone calls |
title_full_unstemmed |
Estimating COVID-19 cases and outbreaks on-stream through phone calls |
title_sort |
Estimating COVID-19 cases and outbreaks on-stream through phone calls |
dc.creator.none.fl_str_mv |
Alvarez, Ezequiel Obando, Daniela Crespo, Sebastian Garcia, Enio Kreplak, Nicolas Marsico, Franco |
author |
Alvarez, Ezequiel |
author_facet |
Alvarez, Ezequiel Obando, Daniela Crespo, Sebastian Garcia, Enio Kreplak, Nicolas Marsico, Franco |
author_role |
author |
author2 |
Obando, Daniela Crespo, Sebastian Garcia, Enio Kreplak, Nicolas Marsico, Franco |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
CORRELATION COVID-19 EARLY-ALARM, LIVE-TRACKING PHONE CALLS |
topic |
CORRELATION COVID-19 EARLY-ALARM, LIVE-TRACKING PHONE CALLS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.3 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
One of the main problems in controlling COVID-19 epidemic spread is the delay in confirming cases. Having information on changes in the epidemic evolution or outbreaks rise before laboratory-confirmation is crucial in decision making for Public Health policies. We present an algorithm to estimate on-stream the number of COVID-19 cases using the data from telephone calls to a COVID-line. By modelling the calls as background (proportional to population) plus signal (proportional to infected), we fit the calls in Province of Buenos Aires (Argentina) with coefficient of determination R 2 > 0.85. This result allows us to estimate the number of cases given the number of calls from a specific district, days before the laboratory results are available. We validate the algorithm with real data. We show how to use the algorithm to track on-stream the epidemic, and present the Early Outbreak Alarm to detect outbreaks in advance of laboratory results. One key point in the developed algorithm is a detailed track of the uncertainties in the estimations, since the alarm uses the significance of the observables as a main indicator to detect an anomaly. We present the details of the explicit example in Villa Azul (Quilmes) where this tool resulted crucial to control an outbreak on time. The presented tools have been designed in urgency with the available data at the time of the development, and therefore have their limitations which we describe and discuss. We consider possible improvements on the tools, many of which are currently under development. Fil: Alvarez, Ezequiel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias Fisicas. - Universidad Nacional de San Martin. Instituto de Ciencias Fisicas.; Argentina Fil: Obando, Daniela. Provincia de Buenos Aires. Ministerio de Salud; Argentina Fil: Crespo, Sebastian. Provincia de Buenos Aires. Ministerio de Salud; Argentina Fil: Garcia, Enio. Provincia de Buenos Aires. Ministerio de Salud; Argentina Fil: Kreplak, Nicolas. Provincia de Buenos Aires. Ministerio de Salud; Argentina Fil: Marsico, Franco. Provincia de Buenos Aires. Ministerio de Salud; Argentina |
description |
One of the main problems in controlling COVID-19 epidemic spread is the delay in confirming cases. Having information on changes in the epidemic evolution or outbreaks rise before laboratory-confirmation is crucial in decision making for Public Health policies. We present an algorithm to estimate on-stream the number of COVID-19 cases using the data from telephone calls to a COVID-line. By modelling the calls as background (proportional to population) plus signal (proportional to infected), we fit the calls in Province of Buenos Aires (Argentina) with coefficient of determination R 2 > 0.85. This result allows us to estimate the number of cases given the number of calls from a specific district, days before the laboratory results are available. We validate the algorithm with real data. We show how to use the algorithm to track on-stream the epidemic, and present the Early Outbreak Alarm to detect outbreaks in advance of laboratory results. One key point in the developed algorithm is a detailed track of the uncertainties in the estimations, since the alarm uses the significance of the observables as a main indicator to detect an anomaly. We present the details of the explicit example in Villa Azul (Quilmes) where this tool resulted crucial to control an outbreak on time. The presented tools have been designed in urgency with the available data at the time of the development, and therefore have their limitations which we describe and discuss. We consider possible improvements on the tools, many of which are currently under development. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/133854 Alvarez, Ezequiel; Obando, Daniela; Crespo, Sebastian; Garcia, Enio; Kreplak, Nicolas; et al.; Estimating COVID-19 cases and outbreaks on-stream through phone calls; The Royal Society; Royal Society Open Science; 8; 3; 3-2021; 1-11 2054-5703 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/133854 |
identifier_str_mv |
Alvarez, Ezequiel; Obando, Daniela; Crespo, Sebastian; Garcia, Enio; Kreplak, Nicolas; et al.; Estimating COVID-19 cases and outbreaks on-stream through phone calls; The Royal Society; Royal Society Open Science; 8; 3; 3-2021; 1-11 2054-5703 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsos.202312 info:eu-repo/semantics/altIdentifier/doi/10.1098/rsos.202312 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
The Royal Society |
publisher.none.fl_str_mv |
The Royal Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980172998901760 |
score |
12.993085 |