Determining the infrared reflectance of specular surfaces by using thermographic analysis
- Autores
- Flores Larsen, Silvana Elinor; Hongn, Marcos Ezequiel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Specular surfaces as glass, mirrors and metals are commonly used in solar devices and in building facades. Determining the temperature distribution of such kind of surfaces allows estimating their thermal losses and detecting hot spots and temperature gradients that provokes material stress and rupture. In this sense, thermography is a non-contact measurement technique that is capable to quickly scan and record these surface temperature distributions, but when specular materials are inspected the infrared reflectance becomes a crucial parameter. This work describes a methodology to measure the reflectance of specular materials for different incidence angles in the infrared range 8 μm–14 μm, by using a thermographic camera and an infrared radiation source. The methodology includes the analysis of errors in the estimation of the reflectance and how to select the temperature of the source that minimizes these errors. The method is applied to different specular surfaces commonly used in building facades and solar devices, whose infrared specular reflectances are estimated for different incidence angles. The obtained results are analyzed in order to provide valuable information for in-situ thermographic measurements of specular surfaces.
Fil: Flores Larsen, Silvana Elinor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energia No Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energia No Convencional; Argentina
Fil: Hongn, Marcos Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energia No Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energia No Convencional; Argentina - Materia
-
Infrared Reflectance
Thermography
Infrared Optical Properties
Specular Materials - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22144
Ver los metadatos del registro completo
id |
CONICETDig_2f89dbb07e29d27d5dda5f9be9d3b20b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22144 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Determining the infrared reflectance of specular surfaces by using thermographic analysisFlores Larsen, Silvana ElinorHongn, Marcos EzequielInfrared ReflectanceThermographyInfrared Optical PropertiesSpecular Materialshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Specular surfaces as glass, mirrors and metals are commonly used in solar devices and in building facades. Determining the temperature distribution of such kind of surfaces allows estimating their thermal losses and detecting hot spots and temperature gradients that provokes material stress and rupture. In this sense, thermography is a non-contact measurement technique that is capable to quickly scan and record these surface temperature distributions, but when specular materials are inspected the infrared reflectance becomes a crucial parameter. This work describes a methodology to measure the reflectance of specular materials for different incidence angles in the infrared range 8 μm–14 μm, by using a thermographic camera and an infrared radiation source. The methodology includes the analysis of errors in the estimation of the reflectance and how to select the temperature of the source that minimizes these errors. The method is applied to different specular surfaces commonly used in building facades and solar devices, whose infrared specular reflectances are estimated for different incidence angles. The obtained results are analyzed in order to provide valuable information for in-situ thermographic measurements of specular surfaces.Fil: Flores Larsen, Silvana Elinor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energia No Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energia No Convencional; ArgentinaFil: Hongn, Marcos Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energia No Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energia No Convencional; ArgentinaElsevier2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22144Flores Larsen, Silvana Elinor; Hongn, Marcos Ezequiel; Determining the infrared reflectance of specular surfaces by using thermographic analysis; Elsevier; Renewable Energy; 64; 12-2013; 306-3130960-1481CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.renene.2013.11.049info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0960148113006277info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:15Zoai:ri.conicet.gov.ar:11336/22144instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:15.716CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Determining the infrared reflectance of specular surfaces by using thermographic analysis |
title |
Determining the infrared reflectance of specular surfaces by using thermographic analysis |
spellingShingle |
Determining the infrared reflectance of specular surfaces by using thermographic analysis Flores Larsen, Silvana Elinor Infrared Reflectance Thermography Infrared Optical Properties Specular Materials |
title_short |
Determining the infrared reflectance of specular surfaces by using thermographic analysis |
title_full |
Determining the infrared reflectance of specular surfaces by using thermographic analysis |
title_fullStr |
Determining the infrared reflectance of specular surfaces by using thermographic analysis |
title_full_unstemmed |
Determining the infrared reflectance of specular surfaces by using thermographic analysis |
title_sort |
Determining the infrared reflectance of specular surfaces by using thermographic analysis |
dc.creator.none.fl_str_mv |
Flores Larsen, Silvana Elinor Hongn, Marcos Ezequiel |
author |
Flores Larsen, Silvana Elinor |
author_facet |
Flores Larsen, Silvana Elinor Hongn, Marcos Ezequiel |
author_role |
author |
author2 |
Hongn, Marcos Ezequiel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Infrared Reflectance Thermography Infrared Optical Properties Specular Materials |
topic |
Infrared Reflectance Thermography Infrared Optical Properties Specular Materials |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Specular surfaces as glass, mirrors and metals are commonly used in solar devices and in building facades. Determining the temperature distribution of such kind of surfaces allows estimating their thermal losses and detecting hot spots and temperature gradients that provokes material stress and rupture. In this sense, thermography is a non-contact measurement technique that is capable to quickly scan and record these surface temperature distributions, but when specular materials are inspected the infrared reflectance becomes a crucial parameter. This work describes a methodology to measure the reflectance of specular materials for different incidence angles in the infrared range 8 μm–14 μm, by using a thermographic camera and an infrared radiation source. The methodology includes the analysis of errors in the estimation of the reflectance and how to select the temperature of the source that minimizes these errors. The method is applied to different specular surfaces commonly used in building facades and solar devices, whose infrared specular reflectances are estimated for different incidence angles. The obtained results are analyzed in order to provide valuable information for in-situ thermographic measurements of specular surfaces. Fil: Flores Larsen, Silvana Elinor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energia No Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energia No Convencional; Argentina Fil: Hongn, Marcos Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energia No Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energia No Convencional; Argentina |
description |
Specular surfaces as glass, mirrors and metals are commonly used in solar devices and in building facades. Determining the temperature distribution of such kind of surfaces allows estimating their thermal losses and detecting hot spots and temperature gradients that provokes material stress and rupture. In this sense, thermography is a non-contact measurement technique that is capable to quickly scan and record these surface temperature distributions, but when specular materials are inspected the infrared reflectance becomes a crucial parameter. This work describes a methodology to measure the reflectance of specular materials for different incidence angles in the infrared range 8 μm–14 μm, by using a thermographic camera and an infrared radiation source. The methodology includes the analysis of errors in the estimation of the reflectance and how to select the temperature of the source that minimizes these errors. The method is applied to different specular surfaces commonly used in building facades and solar devices, whose infrared specular reflectances are estimated for different incidence angles. The obtained results are analyzed in order to provide valuable information for in-situ thermographic measurements of specular surfaces. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22144 Flores Larsen, Silvana Elinor; Hongn, Marcos Ezequiel; Determining the infrared reflectance of specular surfaces by using thermographic analysis; Elsevier; Renewable Energy; 64; 12-2013; 306-313 0960-1481 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22144 |
identifier_str_mv |
Flores Larsen, Silvana Elinor; Hongn, Marcos Ezequiel; Determining the infrared reflectance of specular surfaces by using thermographic analysis; Elsevier; Renewable Energy; 64; 12-2013; 306-313 0960-1481 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.renene.2013.11.049 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0960148113006277 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613603685040128 |
score |
13.070432 |