Quantum chaotic resonances from short periodic orbits

Autores
Novaes, M.; Pedrosa, Juan Manuel; Wisniacki, Diego Ariel; Carlo, Gabriel Gustavo; Keating, J. P.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present an approach to calculating the quantum resonances and resonance wave functions of chaotic scattering systems, based on the construction of states localized on classical periodic orbits and adapted to the dynamics. Typically only a few such states are necessary for constructing a resonance. Using only short orbits (with periods up to the Ehrenfest time), we obtain approximations to the longest-living states, avoiding computation of the background of short living states. This makes our approach considerably more efficient than previous ones. The number of long-lived states produced within our formulation is in agreement with the fractal Weyl law conjectured recently in this setting. We confirm the accuracy of the approximations using the open quantum baker map as an example. © 2009 The American Physical Society.
Fil: Novaes, M.. Universidade Federal do São Carlos; Brasil
Fil: Pedrosa, Juan Manuel. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Wisniacki, Diego Ariel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Carlo, Gabriel Gustavo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Keating, J. P.. University Of Bristol; Reino Unido
Materia
Localization
Quantum
Open
Systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/61378

id CONICETDig_2e18bae755c3c85f202eed98574d6a4e
oai_identifier_str oai:ri.conicet.gov.ar:11336/61378
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantum chaotic resonances from short periodic orbitsNovaes, M.Pedrosa, Juan ManuelWisniacki, Diego ArielCarlo, Gabriel GustavoKeating, J. P.LocalizationQuantumOpenSystemshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present an approach to calculating the quantum resonances and resonance wave functions of chaotic scattering systems, based on the construction of states localized on classical periodic orbits and adapted to the dynamics. Typically only a few such states are necessary for constructing a resonance. Using only short orbits (with periods up to the Ehrenfest time), we obtain approximations to the longest-living states, avoiding computation of the background of short living states. This makes our approach considerably more efficient than previous ones. The number of long-lived states produced within our formulation is in agreement with the fractal Weyl law conjectured recently in this setting. We confirm the accuracy of the approximations using the open quantum baker map as an example. © 2009 The American Physical Society.Fil: Novaes, M.. Universidade Federal do São Carlos; BrasilFil: Pedrosa, Juan Manuel. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Wisniacki, Diego Ariel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Carlo, Gabriel Gustavo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Keating, J. P.. University Of Bristol; Reino UnidoAmerican Physical Society2009-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61378Novaes, M.; Pedrosa, Juan Manuel; Wisniacki, Diego Ariel; Carlo, Gabriel Gustavo; Keating, J. P.; Quantum chaotic resonances from short periodic orbits; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 80; 3; 9-2009; 1-41539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevE.80.035202info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.80.035202info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:08:43Zoai:ri.conicet.gov.ar:11336/61378instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:08:44.034CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantum chaotic resonances from short periodic orbits
title Quantum chaotic resonances from short periodic orbits
spellingShingle Quantum chaotic resonances from short periodic orbits
Novaes, M.
Localization
Quantum
Open
Systems
title_short Quantum chaotic resonances from short periodic orbits
title_full Quantum chaotic resonances from short periodic orbits
title_fullStr Quantum chaotic resonances from short periodic orbits
title_full_unstemmed Quantum chaotic resonances from short periodic orbits
title_sort Quantum chaotic resonances from short periodic orbits
dc.creator.none.fl_str_mv Novaes, M.
Pedrosa, Juan Manuel
Wisniacki, Diego Ariel
Carlo, Gabriel Gustavo
Keating, J. P.
author Novaes, M.
author_facet Novaes, M.
Pedrosa, Juan Manuel
Wisniacki, Diego Ariel
Carlo, Gabriel Gustavo
Keating, J. P.
author_role author
author2 Pedrosa, Juan Manuel
Wisniacki, Diego Ariel
Carlo, Gabriel Gustavo
Keating, J. P.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Localization
Quantum
Open
Systems
topic Localization
Quantum
Open
Systems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present an approach to calculating the quantum resonances and resonance wave functions of chaotic scattering systems, based on the construction of states localized on classical periodic orbits and adapted to the dynamics. Typically only a few such states are necessary for constructing a resonance. Using only short orbits (with periods up to the Ehrenfest time), we obtain approximations to the longest-living states, avoiding computation of the background of short living states. This makes our approach considerably more efficient than previous ones. The number of long-lived states produced within our formulation is in agreement with the fractal Weyl law conjectured recently in this setting. We confirm the accuracy of the approximations using the open quantum baker map as an example. © 2009 The American Physical Society.
Fil: Novaes, M.. Universidade Federal do São Carlos; Brasil
Fil: Pedrosa, Juan Manuel. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Wisniacki, Diego Ariel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Carlo, Gabriel Gustavo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Keating, J. P.. University Of Bristol; Reino Unido
description We present an approach to calculating the quantum resonances and resonance wave functions of chaotic scattering systems, based on the construction of states localized on classical periodic orbits and adapted to the dynamics. Typically only a few such states are necessary for constructing a resonance. Using only short orbits (with periods up to the Ehrenfest time), we obtain approximations to the longest-living states, avoiding computation of the background of short living states. This makes our approach considerably more efficient than previous ones. The number of long-lived states produced within our formulation is in agreement with the fractal Weyl law conjectured recently in this setting. We confirm the accuracy of the approximations using the open quantum baker map as an example. © 2009 The American Physical Society.
publishDate 2009
dc.date.none.fl_str_mv 2009-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/61378
Novaes, M.; Pedrosa, Juan Manuel; Wisniacki, Diego Ariel; Carlo, Gabriel Gustavo; Keating, J. P.; Quantum chaotic resonances from short periodic orbits; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 80; 3; 9-2009; 1-4
1539-3755
CONICET Digital
CONICET
url http://hdl.handle.net/11336/61378
identifier_str_mv Novaes, M.; Pedrosa, Juan Manuel; Wisniacki, Diego Ariel; Carlo, Gabriel Gustavo; Keating, J. P.; Quantum chaotic resonances from short periodic orbits; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 80; 3; 9-2009; 1-4
1539-3755
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevE.80.035202
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.80.035202
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980418289139712
score 12.993085