Quantum chaotic resonances from short periodic orbits
- Autores
- Novaes, M.; Pedrosa, Juan Manuel; Wisniacki, Diego Ariel; Carlo, Gabriel Gustavo; Keating, J. P.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present an approach to calculating the quantum resonances and resonance wave functions of chaotic scattering systems, based on the construction of states localized on classical periodic orbits and adapted to the dynamics. Typically only a few such states are necessary for constructing a resonance. Using only short orbits (with periods up to the Ehrenfest time), we obtain approximations to the longest-living states, avoiding computation of the background of short living states. This makes our approach considerably more efficient than previous ones. The number of long-lived states produced within our formulation is in agreement with the fractal Weyl law conjectured recently in this setting. We confirm the accuracy of the approximations using the open quantum baker map as an example. © 2009 The American Physical Society.
Fil: Novaes, M.. Universidade Federal do São Carlos; Brasil
Fil: Pedrosa, Juan Manuel. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Wisniacki, Diego Ariel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Carlo, Gabriel Gustavo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Keating, J. P.. University Of Bristol; Reino Unido - Materia
-
Localization
Quantum
Open
Systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61378
Ver los metadatos del registro completo
id |
CONICETDig_2e18bae755c3c85f202eed98574d6a4e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61378 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantum chaotic resonances from short periodic orbitsNovaes, M.Pedrosa, Juan ManuelWisniacki, Diego ArielCarlo, Gabriel GustavoKeating, J. P.LocalizationQuantumOpenSystemshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present an approach to calculating the quantum resonances and resonance wave functions of chaotic scattering systems, based on the construction of states localized on classical periodic orbits and adapted to the dynamics. Typically only a few such states are necessary for constructing a resonance. Using only short orbits (with periods up to the Ehrenfest time), we obtain approximations to the longest-living states, avoiding computation of the background of short living states. This makes our approach considerably more efficient than previous ones. The number of long-lived states produced within our formulation is in agreement with the fractal Weyl law conjectured recently in this setting. We confirm the accuracy of the approximations using the open quantum baker map as an example. © 2009 The American Physical Society.Fil: Novaes, M.. Universidade Federal do São Carlos; BrasilFil: Pedrosa, Juan Manuel. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Wisniacki, Diego Ariel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Carlo, Gabriel Gustavo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Keating, J. P.. University Of Bristol; Reino UnidoAmerican Physical Society2009-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61378Novaes, M.; Pedrosa, Juan Manuel; Wisniacki, Diego Ariel; Carlo, Gabriel Gustavo; Keating, J. P.; Quantum chaotic resonances from short periodic orbits; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 80; 3; 9-2009; 1-41539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevE.80.035202info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.80.035202info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:08:43Zoai:ri.conicet.gov.ar:11336/61378instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:08:44.034CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantum chaotic resonances from short periodic orbits |
title |
Quantum chaotic resonances from short periodic orbits |
spellingShingle |
Quantum chaotic resonances from short periodic orbits Novaes, M. Localization Quantum Open Systems |
title_short |
Quantum chaotic resonances from short periodic orbits |
title_full |
Quantum chaotic resonances from short periodic orbits |
title_fullStr |
Quantum chaotic resonances from short periodic orbits |
title_full_unstemmed |
Quantum chaotic resonances from short periodic orbits |
title_sort |
Quantum chaotic resonances from short periodic orbits |
dc.creator.none.fl_str_mv |
Novaes, M. Pedrosa, Juan Manuel Wisniacki, Diego Ariel Carlo, Gabriel Gustavo Keating, J. P. |
author |
Novaes, M. |
author_facet |
Novaes, M. Pedrosa, Juan Manuel Wisniacki, Diego Ariel Carlo, Gabriel Gustavo Keating, J. P. |
author_role |
author |
author2 |
Pedrosa, Juan Manuel Wisniacki, Diego Ariel Carlo, Gabriel Gustavo Keating, J. P. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Localization Quantum Open Systems |
topic |
Localization Quantum Open Systems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present an approach to calculating the quantum resonances and resonance wave functions of chaotic scattering systems, based on the construction of states localized on classical periodic orbits and adapted to the dynamics. Typically only a few such states are necessary for constructing a resonance. Using only short orbits (with periods up to the Ehrenfest time), we obtain approximations to the longest-living states, avoiding computation of the background of short living states. This makes our approach considerably more efficient than previous ones. The number of long-lived states produced within our formulation is in agreement with the fractal Weyl law conjectured recently in this setting. We confirm the accuracy of the approximations using the open quantum baker map as an example. © 2009 The American Physical Society. Fil: Novaes, M.. Universidade Federal do São Carlos; Brasil Fil: Pedrosa, Juan Manuel. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Wisniacki, Diego Ariel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Carlo, Gabriel Gustavo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Keating, J. P.. University Of Bristol; Reino Unido |
description |
We present an approach to calculating the quantum resonances and resonance wave functions of chaotic scattering systems, based on the construction of states localized on classical periodic orbits and adapted to the dynamics. Typically only a few such states are necessary for constructing a resonance. Using only short orbits (with periods up to the Ehrenfest time), we obtain approximations to the longest-living states, avoiding computation of the background of short living states. This makes our approach considerably more efficient than previous ones. The number of long-lived states produced within our formulation is in agreement with the fractal Weyl law conjectured recently in this setting. We confirm the accuracy of the approximations using the open quantum baker map as an example. © 2009 The American Physical Society. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61378 Novaes, M.; Pedrosa, Juan Manuel; Wisniacki, Diego Ariel; Carlo, Gabriel Gustavo; Keating, J. P.; Quantum chaotic resonances from short periodic orbits; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 80; 3; 9-2009; 1-4 1539-3755 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/61378 |
identifier_str_mv |
Novaes, M.; Pedrosa, Juan Manuel; Wisniacki, Diego Ariel; Carlo, Gabriel Gustavo; Keating, J. P.; Quantum chaotic resonances from short periodic orbits; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 80; 3; 9-2009; 1-4 1539-3755 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevE.80.035202 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.80.035202 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980418289139712 |
score |
12.993085 |