Modeling and path-following control of a wheelchair in human-shared environments

Autores
Herrera Anda, Daniel Esteban; Roberti, Flavio; Carelli Albarracin, Ricardo Oscar; Andaluz, Victor; Varela, José; Ortiz, Jessica; Canseco, Paúl
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work presents the kinematic and dynamic modeling of a human-wheelchair system which considers that its center of mass is not located in the middle of the wheel's axle. Furthermore, a novel motion controller is presented for a human-wheelchair system, which is capable of performing positioning and path-following tasks in human-shared environments. This controller design is based on two cascaded subsystems: A kinematic controller, and a dynamic controller that compensates the dynamics of the human-wheelchair system. Additionally, an algorithm based on fuzzy-logic is proposed and incorporated in the aforementioned path-following control for pedestrian collision avoidance. This methodology considers to quantify heuristics social rules to make a balance between modulating velocity or direction during the avoidance. Three different interference cases, commonly found during walking events, are tested in a structured scenario. The experimental results demonstrate that the system is capable of overcoming many usual interference situations with human obstacles. A good performance of the path-following control is also verified.
Fil: Herrera Anda, Daniel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Roberti, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Andaluz, Victor. Universidad de Las Fuerzas Armadas; Ecuador
Fil: Varela, José. Universidad de Las Fuerzas Armadas; Ecuador
Fil: Ortiz, Jessica. Universidad de Las Fuerzas Armadas; Ecuador
Fil: Canseco, Paúl. Universidad Técnica de Ambato; Ecuador
Materia
CASCADE CONTROL
DYNAMIC MODELING
FUZZY LOGIC
HUMAN-ROBOT INTERACTION
LYAPUNOV'S METHOD
PEDESTRIAN COLLISION AVOIDANCE
SOCIAL EVASION
WHEELCHAIR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/148457

id CONICETDig_2e077365539fb8019c346f6cb9a23482
oai_identifier_str oai:ri.conicet.gov.ar:11336/148457
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Modeling and path-following control of a wheelchair in human-shared environmentsHerrera Anda, Daniel EstebanRoberti, FlavioCarelli Albarracin, Ricardo OscarAndaluz, VictorVarela, JoséOrtiz, JessicaCanseco, PaúlCASCADE CONTROLDYNAMIC MODELINGFUZZY LOGICHUMAN-ROBOT INTERACTIONLYAPUNOV'S METHODPEDESTRIAN COLLISION AVOIDANCESOCIAL EVASIONWHEELCHAIRhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This work presents the kinematic and dynamic modeling of a human-wheelchair system which considers that its center of mass is not located in the middle of the wheel's axle. Furthermore, a novel motion controller is presented for a human-wheelchair system, which is capable of performing positioning and path-following tasks in human-shared environments. This controller design is based on two cascaded subsystems: A kinematic controller, and a dynamic controller that compensates the dynamics of the human-wheelchair system. Additionally, an algorithm based on fuzzy-logic is proposed and incorporated in the aforementioned path-following control for pedestrian collision avoidance. This methodology considers to quantify heuristics social rules to make a balance between modulating velocity or direction during the avoidance. Three different interference cases, commonly found during walking events, are tested in a structured scenario. The experimental results demonstrate that the system is capable of overcoming many usual interference situations with human obstacles. A good performance of the path-following control is also verified.Fil: Herrera Anda, Daniel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Roberti, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Andaluz, Victor. Universidad de Las Fuerzas Armadas; EcuadorFil: Varela, José. Universidad de Las Fuerzas Armadas; EcuadorFil: Ortiz, Jessica. Universidad de Las Fuerzas Armadas; EcuadorFil: Canseco, Paúl. Universidad Técnica de Ambato; EcuadorWorld Scientific2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/148457Herrera Anda, Daniel Esteban; Roberti, Flavio; Carelli Albarracin, Ricardo Oscar; Andaluz, Victor; Varela, José; et al.; Modeling and path-following control of a wheelchair in human-shared environments; World Scientific; International Journal Of Humanoid Robotics; 15; 2; 4-2018; 1-330219-8436CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S021984361850010Xinfo:eu-repo/semantics/altIdentifier/doi/10.1142/S021984361850010Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:05Zoai:ri.conicet.gov.ar:11336/148457instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:05.888CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Modeling and path-following control of a wheelchair in human-shared environments
title Modeling and path-following control of a wheelchair in human-shared environments
spellingShingle Modeling and path-following control of a wheelchair in human-shared environments
Herrera Anda, Daniel Esteban
CASCADE CONTROL
DYNAMIC MODELING
FUZZY LOGIC
HUMAN-ROBOT INTERACTION
LYAPUNOV'S METHOD
PEDESTRIAN COLLISION AVOIDANCE
SOCIAL EVASION
WHEELCHAIR
title_short Modeling and path-following control of a wheelchair in human-shared environments
title_full Modeling and path-following control of a wheelchair in human-shared environments
title_fullStr Modeling and path-following control of a wheelchair in human-shared environments
title_full_unstemmed Modeling and path-following control of a wheelchair in human-shared environments
title_sort Modeling and path-following control of a wheelchair in human-shared environments
dc.creator.none.fl_str_mv Herrera Anda, Daniel Esteban
Roberti, Flavio
Carelli Albarracin, Ricardo Oscar
Andaluz, Victor
Varela, José
Ortiz, Jessica
Canseco, Paúl
author Herrera Anda, Daniel Esteban
author_facet Herrera Anda, Daniel Esteban
Roberti, Flavio
Carelli Albarracin, Ricardo Oscar
Andaluz, Victor
Varela, José
Ortiz, Jessica
Canseco, Paúl
author_role author
author2 Roberti, Flavio
Carelli Albarracin, Ricardo Oscar
Andaluz, Victor
Varela, José
Ortiz, Jessica
Canseco, Paúl
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv CASCADE CONTROL
DYNAMIC MODELING
FUZZY LOGIC
HUMAN-ROBOT INTERACTION
LYAPUNOV'S METHOD
PEDESTRIAN COLLISION AVOIDANCE
SOCIAL EVASION
WHEELCHAIR
topic CASCADE CONTROL
DYNAMIC MODELING
FUZZY LOGIC
HUMAN-ROBOT INTERACTION
LYAPUNOV'S METHOD
PEDESTRIAN COLLISION AVOIDANCE
SOCIAL EVASION
WHEELCHAIR
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This work presents the kinematic and dynamic modeling of a human-wheelchair system which considers that its center of mass is not located in the middle of the wheel's axle. Furthermore, a novel motion controller is presented for a human-wheelchair system, which is capable of performing positioning and path-following tasks in human-shared environments. This controller design is based on two cascaded subsystems: A kinematic controller, and a dynamic controller that compensates the dynamics of the human-wheelchair system. Additionally, an algorithm based on fuzzy-logic is proposed and incorporated in the aforementioned path-following control for pedestrian collision avoidance. This methodology considers to quantify heuristics social rules to make a balance between modulating velocity or direction during the avoidance. Three different interference cases, commonly found during walking events, are tested in a structured scenario. The experimental results demonstrate that the system is capable of overcoming many usual interference situations with human obstacles. A good performance of the path-following control is also verified.
Fil: Herrera Anda, Daniel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Roberti, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Andaluz, Victor. Universidad de Las Fuerzas Armadas; Ecuador
Fil: Varela, José. Universidad de Las Fuerzas Armadas; Ecuador
Fil: Ortiz, Jessica. Universidad de Las Fuerzas Armadas; Ecuador
Fil: Canseco, Paúl. Universidad Técnica de Ambato; Ecuador
description This work presents the kinematic and dynamic modeling of a human-wheelchair system which considers that its center of mass is not located in the middle of the wheel's axle. Furthermore, a novel motion controller is presented for a human-wheelchair system, which is capable of performing positioning and path-following tasks in human-shared environments. This controller design is based on two cascaded subsystems: A kinematic controller, and a dynamic controller that compensates the dynamics of the human-wheelchair system. Additionally, an algorithm based on fuzzy-logic is proposed and incorporated in the aforementioned path-following control for pedestrian collision avoidance. This methodology considers to quantify heuristics social rules to make a balance between modulating velocity or direction during the avoidance. Three different interference cases, commonly found during walking events, are tested in a structured scenario. The experimental results demonstrate that the system is capable of overcoming many usual interference situations with human obstacles. A good performance of the path-following control is also verified.
publishDate 2018
dc.date.none.fl_str_mv 2018-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/148457
Herrera Anda, Daniel Esteban; Roberti, Flavio; Carelli Albarracin, Ricardo Oscar; Andaluz, Victor; Varela, José; et al.; Modeling and path-following control of a wheelchair in human-shared environments; World Scientific; International Journal Of Humanoid Robotics; 15; 2; 4-2018; 1-33
0219-8436
CONICET Digital
CONICET
url http://hdl.handle.net/11336/148457
identifier_str_mv Herrera Anda, Daniel Esteban; Roberti, Flavio; Carelli Albarracin, Ricardo Oscar; Andaluz, Victor; Varela, José; et al.; Modeling and path-following control of a wheelchair in human-shared environments; World Scientific; International Journal Of Humanoid Robotics; 15; 2; 4-2018; 1-33
0219-8436
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S021984361850010X
info:eu-repo/semantics/altIdentifier/doi/10.1142/S021984361850010X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613089978220544
score 13.070432