New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticles
- Autores
- Bourguignon, Natalia; Kamat, Vivek; Perez, Maximiliano; Mathee, Kalai; Lerner, Betiana; Bhansali, Shekhar
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Microbial bioflms are composed of surface-adhered microorganisms enclosed in extracellular polymeric substances. The bioflm lifestyle is the intrinsic drug resistance imparted to bacterial cells protected by the matrix. So far, conventional drug susceptibility tests for bioflm are reagent and time-consuming, and most of them are in static conditions. Rapid and easyto-use methods for bioflm formation and antibiotic activity testing need to be developed to accelerate the discovery of new antibioflm strategies. Herein, a Lab-On-Chip (LOC) device is presented that provides optimal microenvironmental conditions closely mimicking real-life clinical bioflm status. This new device allows homogeneous attachment and immobilization of Pseudomonas aeruginosa PA01-EGFP cells, and the bioflms grown can be monitored by fuorescence microscopy. P. aeruginosa is an opportunistic pathogen known as a model for drug screening bioflm studies. The infuence of fow rates on bioflms growth was analyzed by fow simulations using COMSOL® 5.2. Signifcant cell adhesion to the substrate and bioflm formation inside the microchannels were observed at higher fow rates>100 µL/h. After bioflm formation, the efectiveness of silver nanoparticles (SNP), chitosan nanoparticles (CNP), and a complex of chitosan-coated silver nanoparticles (CSNP) to eradicate the bioflm under a continuous fow was explored. The most signifcant loss of bioflm was seen with CSNP with a 65.5% decrease in average live/dead cell signal in bioflm compared to the negative controls. Our results demonstrate that this system is a user-friendly tool for antibioflm drug screening that could be simply applied in clinical laboratories.
Fil: Bourguignon, Natalia. Universidad Tecnológica Nacional; Argentina. Florida International University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kamat, Vivek. Florida International University; Estados Unidos
Fil: Perez, Maximiliano. Universidad Tecnológica Nacional; Argentina. Florida International University; Estados Unidos
Fil: Mathee, Kalai. Florida International University; Estados Unidos
Fil: Lerner, Betiana. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Florida International University; Estados Unidos
Fil: Bhansali, Shekhar. Florida International University; Estados Unidos - Materia
-
BIOFILM
CONTINUOUS FLOW
MICROFLUIDICS
MICROREACTOR
NANOPARTICLES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/197334
Ver los metadatos del registro completo
| id |
CONICETDig_2daad68c90902626fa03bb081746f581 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/197334 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticlesBourguignon, NataliaKamat, VivekPerez, MaximilianoMathee, KalaiLerner, BetianaBhansali, ShekharBIOFILMCONTINUOUS FLOWMICROFLUIDICSMICROREACTORNANOPARTICLEShttps://purl.org/becyt/ford/3.4https://purl.org/becyt/ford/3Microbial bioflms are composed of surface-adhered microorganisms enclosed in extracellular polymeric substances. The bioflm lifestyle is the intrinsic drug resistance imparted to bacterial cells protected by the matrix. So far, conventional drug susceptibility tests for bioflm are reagent and time-consuming, and most of them are in static conditions. Rapid and easyto-use methods for bioflm formation and antibiotic activity testing need to be developed to accelerate the discovery of new antibioflm strategies. Herein, a Lab-On-Chip (LOC) device is presented that provides optimal microenvironmental conditions closely mimicking real-life clinical bioflm status. This new device allows homogeneous attachment and immobilization of Pseudomonas aeruginosa PA01-EGFP cells, and the bioflms grown can be monitored by fuorescence microscopy. P. aeruginosa is an opportunistic pathogen known as a model for drug screening bioflm studies. The infuence of fow rates on bioflms growth was analyzed by fow simulations using COMSOL® 5.2. Signifcant cell adhesion to the substrate and bioflm formation inside the microchannels were observed at higher fow rates>100 µL/h. After bioflm formation, the efectiveness of silver nanoparticles (SNP), chitosan nanoparticles (CNP), and a complex of chitosan-coated silver nanoparticles (CSNP) to eradicate the bioflm under a continuous fow was explored. The most signifcant loss of bioflm was seen with CSNP with a 65.5% decrease in average live/dead cell signal in bioflm compared to the negative controls. Our results demonstrate that this system is a user-friendly tool for antibioflm drug screening that could be simply applied in clinical laboratories.Fil: Bourguignon, Natalia. Universidad Tecnológica Nacional; Argentina. Florida International University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kamat, Vivek. Florida International University; Estados UnidosFil: Perez, Maximiliano. Universidad Tecnológica Nacional; Argentina. Florida International University; Estados UnidosFil: Mathee, Kalai. Florida International University; Estados UnidosFil: Lerner, Betiana. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Florida International University; Estados UnidosFil: Bhansali, Shekhar. Florida International University; Estados UnidosSpringer2022-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/197334Bourguignon, Natalia; Kamat, Vivek; Perez, Maximiliano; Mathee, Kalai; Lerner, Betiana; et al.; New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticles; Springer; Applied Microbiology and Biotechnology; 106; 7; 4-2022; 2729-27380175-7598CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00253-022-11855-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-06T13:16:21Zoai:ri.conicet.gov.ar:11336/197334instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-06 13:16:21.671CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticles |
| title |
New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticles |
| spellingShingle |
New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticles Bourguignon, Natalia BIOFILM CONTINUOUS FLOW MICROFLUIDICS MICROREACTOR NANOPARTICLES |
| title_short |
New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticles |
| title_full |
New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticles |
| title_fullStr |
New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticles |
| title_full_unstemmed |
New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticles |
| title_sort |
New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticles |
| dc.creator.none.fl_str_mv |
Bourguignon, Natalia Kamat, Vivek Perez, Maximiliano Mathee, Kalai Lerner, Betiana Bhansali, Shekhar |
| author |
Bourguignon, Natalia |
| author_facet |
Bourguignon, Natalia Kamat, Vivek Perez, Maximiliano Mathee, Kalai Lerner, Betiana Bhansali, Shekhar |
| author_role |
author |
| author2 |
Kamat, Vivek Perez, Maximiliano Mathee, Kalai Lerner, Betiana Bhansali, Shekhar |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
BIOFILM CONTINUOUS FLOW MICROFLUIDICS MICROREACTOR NANOPARTICLES |
| topic |
BIOFILM CONTINUOUS FLOW MICROFLUIDICS MICROREACTOR NANOPARTICLES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.4 https://purl.org/becyt/ford/3 |
| dc.description.none.fl_txt_mv |
Microbial bioflms are composed of surface-adhered microorganisms enclosed in extracellular polymeric substances. The bioflm lifestyle is the intrinsic drug resistance imparted to bacterial cells protected by the matrix. So far, conventional drug susceptibility tests for bioflm are reagent and time-consuming, and most of them are in static conditions. Rapid and easyto-use methods for bioflm formation and antibiotic activity testing need to be developed to accelerate the discovery of new antibioflm strategies. Herein, a Lab-On-Chip (LOC) device is presented that provides optimal microenvironmental conditions closely mimicking real-life clinical bioflm status. This new device allows homogeneous attachment and immobilization of Pseudomonas aeruginosa PA01-EGFP cells, and the bioflms grown can be monitored by fuorescence microscopy. P. aeruginosa is an opportunistic pathogen known as a model for drug screening bioflm studies. The infuence of fow rates on bioflms growth was analyzed by fow simulations using COMSOL® 5.2. Signifcant cell adhesion to the substrate and bioflm formation inside the microchannels were observed at higher fow rates>100 µL/h. After bioflm formation, the efectiveness of silver nanoparticles (SNP), chitosan nanoparticles (CNP), and a complex of chitosan-coated silver nanoparticles (CSNP) to eradicate the bioflm under a continuous fow was explored. The most signifcant loss of bioflm was seen with CSNP with a 65.5% decrease in average live/dead cell signal in bioflm compared to the negative controls. Our results demonstrate that this system is a user-friendly tool for antibioflm drug screening that could be simply applied in clinical laboratories. Fil: Bourguignon, Natalia. Universidad Tecnológica Nacional; Argentina. Florida International University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Kamat, Vivek. Florida International University; Estados Unidos Fil: Perez, Maximiliano. Universidad Tecnológica Nacional; Argentina. Florida International University; Estados Unidos Fil: Mathee, Kalai. Florida International University; Estados Unidos Fil: Lerner, Betiana. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Florida International University; Estados Unidos Fil: Bhansali, Shekhar. Florida International University; Estados Unidos |
| description |
Microbial bioflms are composed of surface-adhered microorganisms enclosed in extracellular polymeric substances. The bioflm lifestyle is the intrinsic drug resistance imparted to bacterial cells protected by the matrix. So far, conventional drug susceptibility tests for bioflm are reagent and time-consuming, and most of them are in static conditions. Rapid and easyto-use methods for bioflm formation and antibiotic activity testing need to be developed to accelerate the discovery of new antibioflm strategies. Herein, a Lab-On-Chip (LOC) device is presented that provides optimal microenvironmental conditions closely mimicking real-life clinical bioflm status. This new device allows homogeneous attachment and immobilization of Pseudomonas aeruginosa PA01-EGFP cells, and the bioflms grown can be monitored by fuorescence microscopy. P. aeruginosa is an opportunistic pathogen known as a model for drug screening bioflm studies. The infuence of fow rates on bioflms growth was analyzed by fow simulations using COMSOL® 5.2. Signifcant cell adhesion to the substrate and bioflm formation inside the microchannels were observed at higher fow rates>100 µL/h. After bioflm formation, the efectiveness of silver nanoparticles (SNP), chitosan nanoparticles (CNP), and a complex of chitosan-coated silver nanoparticles (CSNP) to eradicate the bioflm under a continuous fow was explored. The most signifcant loss of bioflm was seen with CSNP with a 65.5% decrease in average live/dead cell signal in bioflm compared to the negative controls. Our results demonstrate that this system is a user-friendly tool for antibioflm drug screening that could be simply applied in clinical laboratories. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/197334 Bourguignon, Natalia; Kamat, Vivek; Perez, Maximiliano; Mathee, Kalai; Lerner, Betiana; et al.; New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticles; Springer; Applied Microbiology and Biotechnology; 106; 7; 4-2022; 2729-2738 0175-7598 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/197334 |
| identifier_str_mv |
Bourguignon, Natalia; Kamat, Vivek; Perez, Maximiliano; Mathee, Kalai; Lerner, Betiana; et al.; New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticles; Springer; Applied Microbiology and Biotechnology; 106; 7; 4-2022; 2729-2738 0175-7598 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00253-022-11855-9 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1856403450423672832 |
| score |
13.106097 |