Memory and long-range correlations in chess games
- Autores
- Schaigorodsky, Ana Laura; Perotti, Juan Ignacio; Billoni, Orlando Vito
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we report the existence of long-range memory in the opening moves of a chronologically ordered set of chess games using an extensive chess database. We used two mapping rules to build discrete time series and analyzed them using two methods for detecting long-range correlations; rescaled range analysis and detrended fluctuation analysis. We found that long-range memory is related to the level of the players. When the database is filtered according to player levels we found differences in the persistence of the different subsets. For high level players, correlations are stronger at long time scales; whereas in intermediate and low level players they reach the maximum value at shorter time scales. This can be interpreted as a signature of the different strategies used by players with different levels of expertise. These results are robust against the assignation rules and the method employed in the analysis of the time series.
Fil: Schaigorodsky, Ana Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Perotti, Juan Ignacio. Aalto University; Finlandia
Fil: Billoni, Orlando Vito. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina - Materia
-
Long Range Correlations
Zip'S Law
Interdisciplinary Physics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/31658
Ver los metadatos del registro completo
| id |
CONICETDig_2da00fd5990a04f0d55a84b38bef047c |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/31658 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Memory and long-range correlations in chess gamesSchaigorodsky, Ana LauraPerotti, Juan IgnacioBilloni, Orlando VitoLong Range CorrelationsZip'S LawInterdisciplinary Physicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this paper we report the existence of long-range memory in the opening moves of a chronologically ordered set of chess games using an extensive chess database. We used two mapping rules to build discrete time series and analyzed them using two methods for detecting long-range correlations; rescaled range analysis and detrended fluctuation analysis. We found that long-range memory is related to the level of the players. When the database is filtered according to player levels we found differences in the persistence of the different subsets. For high level players, correlations are stronger at long time scales; whereas in intermediate and low level players they reach the maximum value at shorter time scales. This can be interpreted as a signature of the different strategies used by players with different levels of expertise. These results are robust against the assignation rules and the method employed in the analysis of the time series.Fil: Schaigorodsky, Ana Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Perotti, Juan Ignacio. Aalto University; FinlandiaFil: Billoni, Orlando Vito. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaElsevier Science2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31658Perotti, Juan Ignacio; Schaigorodsky, Ana Laura; Billoni, Orlando Vito; Memory and long-range correlations in chess games; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 394; 9-2013; 304-3110378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.09.035info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113009126info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:23:05Zoai:ri.conicet.gov.ar:11336/31658instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:23:06.025CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Memory and long-range correlations in chess games |
| title |
Memory and long-range correlations in chess games |
| spellingShingle |
Memory and long-range correlations in chess games Schaigorodsky, Ana Laura Long Range Correlations Zip'S Law Interdisciplinary Physics |
| title_short |
Memory and long-range correlations in chess games |
| title_full |
Memory and long-range correlations in chess games |
| title_fullStr |
Memory and long-range correlations in chess games |
| title_full_unstemmed |
Memory and long-range correlations in chess games |
| title_sort |
Memory and long-range correlations in chess games |
| dc.creator.none.fl_str_mv |
Schaigorodsky, Ana Laura Perotti, Juan Ignacio Billoni, Orlando Vito |
| author |
Schaigorodsky, Ana Laura |
| author_facet |
Schaigorodsky, Ana Laura Perotti, Juan Ignacio Billoni, Orlando Vito |
| author_role |
author |
| author2 |
Perotti, Juan Ignacio Billoni, Orlando Vito |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Long Range Correlations Zip'S Law Interdisciplinary Physics |
| topic |
Long Range Correlations Zip'S Law Interdisciplinary Physics |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this paper we report the existence of long-range memory in the opening moves of a chronologically ordered set of chess games using an extensive chess database. We used two mapping rules to build discrete time series and analyzed them using two methods for detecting long-range correlations; rescaled range analysis and detrended fluctuation analysis. We found that long-range memory is related to the level of the players. When the database is filtered according to player levels we found differences in the persistence of the different subsets. For high level players, correlations are stronger at long time scales; whereas in intermediate and low level players they reach the maximum value at shorter time scales. This can be interpreted as a signature of the different strategies used by players with different levels of expertise. These results are robust against the assignation rules and the method employed in the analysis of the time series. Fil: Schaigorodsky, Ana Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Perotti, Juan Ignacio. Aalto University; Finlandia Fil: Billoni, Orlando Vito. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina |
| description |
In this paper we report the existence of long-range memory in the opening moves of a chronologically ordered set of chess games using an extensive chess database. We used two mapping rules to build discrete time series and analyzed them using two methods for detecting long-range correlations; rescaled range analysis and detrended fluctuation analysis. We found that long-range memory is related to the level of the players. When the database is filtered according to player levels we found differences in the persistence of the different subsets. For high level players, correlations are stronger at long time scales; whereas in intermediate and low level players they reach the maximum value at shorter time scales. This can be interpreted as a signature of the different strategies used by players with different levels of expertise. These results are robust against the assignation rules and the method employed in the analysis of the time series. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/31658 Perotti, Juan Ignacio; Schaigorodsky, Ana Laura; Billoni, Orlando Vito; Memory and long-range correlations in chess games; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 394; 9-2013; 304-311 0378-4371 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/31658 |
| identifier_str_mv |
Perotti, Juan Ignacio; Schaigorodsky, Ana Laura; Billoni, Orlando Vito; Memory and long-range correlations in chess games; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 394; 9-2013; 304-311 0378-4371 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.09.035 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113009126 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781755526217728 |
| score |
12.982451 |