GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases

Autores
Koile, Daniel Isaac; Córdoba, Marta; de Sousa Serro, Maximiliano Guillermo; Kauffman, Marcelo Andres; Yankilevich, Patricio
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: GenIO is a novel web-server, designed to assist clinical genomics researchers and medical doctors in the diagnostic process of rare genetic diseases. The tool identifies the most probable variants causing a rare disease, using the genomic and clinical information provided by a medical practitioner. Variants identified in a whole-genome, whole-exome or target sequencing studies are annotated, classified and filtered by clinical significance. Candidate genes associated with the patient's symptoms, suspected disease and complementary findings are identified to obtain a small manageable number of the most probable recessive and dominant candidate gene variants associated with the rare disease case. Additionally, following the American College of Medical Genetics and Genomics and the Association of Molecular Pathology (ACMG-AMP) guidelines and recommendations, all potentially pathogenic variants that might be contributing to disease and secondary findings are identified. Results: A retrospective study was performed on 40 patients with a diagnostic rate of 40%. All the known genes that were previously considered as disease causing were correctly identified in the final inherit model output lists. In previously undiagnosed cases, we had no additional yield. Conclusion: This unique, intuitive and user-friendly tool to assists medical doctors in the clinical genomics diagnostic process is openly available at https://bioinformatics.ibioba-mpsp-conicet.gov.ar/GenIO/.
Fil: Koile, Daniel Isaac. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina
Fil: Córdoba, Marta. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina
Fil: de Sousa Serro, Maximiliano Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina
Fil: Kauffman, Marcelo Andres. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina
Fil: Yankilevich, Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina
Materia
BIOINFORMATICS
CLINICAL INFORMATICS
EXOME SEQUENCING
GENOME SEQUENCING
RARE DISEASE
VARIANT ANALYSIS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/91268

id CONICETDig_2d811a94be37d7c5e7034c07528c7db6
oai_identifier_str oai:ri.conicet.gov.ar:11336/91268
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseasesKoile, Daniel IsaacCórdoba, Martade Sousa Serro, Maximiliano GuillermoKauffman, Marcelo AndresYankilevich, PatricioBIOINFORMATICSCLINICAL INFORMATICSEXOME SEQUENCINGGENOME SEQUENCINGRARE DISEASEVARIANT ANALYSIShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Background: GenIO is a novel web-server, designed to assist clinical genomics researchers and medical doctors in the diagnostic process of rare genetic diseases. The tool identifies the most probable variants causing a rare disease, using the genomic and clinical information provided by a medical practitioner. Variants identified in a whole-genome, whole-exome or target sequencing studies are annotated, classified and filtered by clinical significance. Candidate genes associated with the patient's symptoms, suspected disease and complementary findings are identified to obtain a small manageable number of the most probable recessive and dominant candidate gene variants associated with the rare disease case. Additionally, following the American College of Medical Genetics and Genomics and the Association of Molecular Pathology (ACMG-AMP) guidelines and recommendations, all potentially pathogenic variants that might be contributing to disease and secondary findings are identified. Results: A retrospective study was performed on 40 patients with a diagnostic rate of 40%. All the known genes that were previously considered as disease causing were correctly identified in the final inherit model output lists. In previously undiagnosed cases, we had no additional yield. Conclusion: This unique, intuitive and user-friendly tool to assists medical doctors in the clinical genomics diagnostic process is openly available at https://bioinformatics.ibioba-mpsp-conicet.gov.ar/GenIO/.Fil: Koile, Daniel Isaac. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Córdoba, Marta. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: de Sousa Serro, Maximiliano Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Kauffman, Marcelo Andres. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Yankilevich, Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaBioMed Central2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91268Koile, Daniel Isaac; Córdoba, Marta; de Sousa Serro, Maximiliano Guillermo; Kauffman, Marcelo Andres; Yankilevich, Patricio; GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases; BioMed Central; BMC Bioinformatics; 19; 1; 1-20181471-2105CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2027-3info:eu-repo/semantics/altIdentifier/doi/10.1186/s12859-018-2027-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:56Zoai:ri.conicet.gov.ar:11336/91268instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:56.619CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases
title GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases
spellingShingle GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases
Koile, Daniel Isaac
BIOINFORMATICS
CLINICAL INFORMATICS
EXOME SEQUENCING
GENOME SEQUENCING
RARE DISEASE
VARIANT ANALYSIS
title_short GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases
title_full GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases
title_fullStr GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases
title_full_unstemmed GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases
title_sort GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases
dc.creator.none.fl_str_mv Koile, Daniel Isaac
Córdoba, Marta
de Sousa Serro, Maximiliano Guillermo
Kauffman, Marcelo Andres
Yankilevich, Patricio
author Koile, Daniel Isaac
author_facet Koile, Daniel Isaac
Córdoba, Marta
de Sousa Serro, Maximiliano Guillermo
Kauffman, Marcelo Andres
Yankilevich, Patricio
author_role author
author2 Córdoba, Marta
de Sousa Serro, Maximiliano Guillermo
Kauffman, Marcelo Andres
Yankilevich, Patricio
author2_role author
author
author
author
dc.subject.none.fl_str_mv BIOINFORMATICS
CLINICAL INFORMATICS
EXOME SEQUENCING
GENOME SEQUENCING
RARE DISEASE
VARIANT ANALYSIS
topic BIOINFORMATICS
CLINICAL INFORMATICS
EXOME SEQUENCING
GENOME SEQUENCING
RARE DISEASE
VARIANT ANALYSIS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Background: GenIO is a novel web-server, designed to assist clinical genomics researchers and medical doctors in the diagnostic process of rare genetic diseases. The tool identifies the most probable variants causing a rare disease, using the genomic and clinical information provided by a medical practitioner. Variants identified in a whole-genome, whole-exome or target sequencing studies are annotated, classified and filtered by clinical significance. Candidate genes associated with the patient's symptoms, suspected disease and complementary findings are identified to obtain a small manageable number of the most probable recessive and dominant candidate gene variants associated with the rare disease case. Additionally, following the American College of Medical Genetics and Genomics and the Association of Molecular Pathology (ACMG-AMP) guidelines and recommendations, all potentially pathogenic variants that might be contributing to disease and secondary findings are identified. Results: A retrospective study was performed on 40 patients with a diagnostic rate of 40%. All the known genes that were previously considered as disease causing were correctly identified in the final inherit model output lists. In previously undiagnosed cases, we had no additional yield. Conclusion: This unique, intuitive and user-friendly tool to assists medical doctors in the clinical genomics diagnostic process is openly available at https://bioinformatics.ibioba-mpsp-conicet.gov.ar/GenIO/.
Fil: Koile, Daniel Isaac. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina
Fil: Córdoba, Marta. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina
Fil: de Sousa Serro, Maximiliano Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina
Fil: Kauffman, Marcelo Andres. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina
Fil: Yankilevich, Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina
description Background: GenIO is a novel web-server, designed to assist clinical genomics researchers and medical doctors in the diagnostic process of rare genetic diseases. The tool identifies the most probable variants causing a rare disease, using the genomic and clinical information provided by a medical practitioner. Variants identified in a whole-genome, whole-exome or target sequencing studies are annotated, classified and filtered by clinical significance. Candidate genes associated with the patient's symptoms, suspected disease and complementary findings are identified to obtain a small manageable number of the most probable recessive and dominant candidate gene variants associated with the rare disease case. Additionally, following the American College of Medical Genetics and Genomics and the Association of Molecular Pathology (ACMG-AMP) guidelines and recommendations, all potentially pathogenic variants that might be contributing to disease and secondary findings are identified. Results: A retrospective study was performed on 40 patients with a diagnostic rate of 40%. All the known genes that were previously considered as disease causing were correctly identified in the final inherit model output lists. In previously undiagnosed cases, we had no additional yield. Conclusion: This unique, intuitive and user-friendly tool to assists medical doctors in the clinical genomics diagnostic process is openly available at https://bioinformatics.ibioba-mpsp-conicet.gov.ar/GenIO/.
publishDate 2018
dc.date.none.fl_str_mv 2018-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/91268
Koile, Daniel Isaac; Córdoba, Marta; de Sousa Serro, Maximiliano Guillermo; Kauffman, Marcelo Andres; Yankilevich, Patricio; GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases; BioMed Central; BMC Bioinformatics; 19; 1; 1-2018
1471-2105
CONICET Digital
CONICET
url http://hdl.handle.net/11336/91268
identifier_str_mv Koile, Daniel Isaac; Córdoba, Marta; de Sousa Serro, Maximiliano Guillermo; Kauffman, Marcelo Andres; Yankilevich, Patricio; GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases; BioMed Central; BMC Bioinformatics; 19; 1; 1-2018
1471-2105
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2027-3
info:eu-repo/semantics/altIdentifier/doi/10.1186/s12859-018-2027-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv BioMed Central
publisher.none.fl_str_mv BioMed Central
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613413396807680
score 13.070432