GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases
- Autores
- Koile, Daniel Isaac; Córdoba, Marta; de Sousa Serro, Maximiliano Guillermo; Kauffman, Marcelo Andres; Yankilevich, Patricio
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: GenIO is a novel web-server, designed to assist clinical genomics researchers and medical doctors in the diagnostic process of rare genetic diseases. The tool identifies the most probable variants causing a rare disease, using the genomic and clinical information provided by a medical practitioner. Variants identified in a whole-genome, whole-exome or target sequencing studies are annotated, classified and filtered by clinical significance. Candidate genes associated with the patient's symptoms, suspected disease and complementary findings are identified to obtain a small manageable number of the most probable recessive and dominant candidate gene variants associated with the rare disease case. Additionally, following the American College of Medical Genetics and Genomics and the Association of Molecular Pathology (ACMG-AMP) guidelines and recommendations, all potentially pathogenic variants that might be contributing to disease and secondary findings are identified. Results: A retrospective study was performed on 40 patients with a diagnostic rate of 40%. All the known genes that were previously considered as disease causing were correctly identified in the final inherit model output lists. In previously undiagnosed cases, we had no additional yield. Conclusion: This unique, intuitive and user-friendly tool to assists medical doctors in the clinical genomics diagnostic process is openly available at https://bioinformatics.ibioba-mpsp-conicet.gov.ar/GenIO/.
Fil: Koile, Daniel Isaac. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina
Fil: Córdoba, Marta. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina
Fil: de Sousa Serro, Maximiliano Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina
Fil: Kauffman, Marcelo Andres. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina
Fil: Yankilevich, Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina - Materia
-
BIOINFORMATICS
CLINICAL INFORMATICS
EXOME SEQUENCING
GENOME SEQUENCING
RARE DISEASE
VARIANT ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/91268
Ver los metadatos del registro completo
id |
CONICETDig_2d811a94be37d7c5e7034c07528c7db6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/91268 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseasesKoile, Daniel IsaacCórdoba, Martade Sousa Serro, Maximiliano GuillermoKauffman, Marcelo AndresYankilevich, PatricioBIOINFORMATICSCLINICAL INFORMATICSEXOME SEQUENCINGGENOME SEQUENCINGRARE DISEASEVARIANT ANALYSIShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Background: GenIO is a novel web-server, designed to assist clinical genomics researchers and medical doctors in the diagnostic process of rare genetic diseases. The tool identifies the most probable variants causing a rare disease, using the genomic and clinical information provided by a medical practitioner. Variants identified in a whole-genome, whole-exome or target sequencing studies are annotated, classified and filtered by clinical significance. Candidate genes associated with the patient's symptoms, suspected disease and complementary findings are identified to obtain a small manageable number of the most probable recessive and dominant candidate gene variants associated with the rare disease case. Additionally, following the American College of Medical Genetics and Genomics and the Association of Molecular Pathology (ACMG-AMP) guidelines and recommendations, all potentially pathogenic variants that might be contributing to disease and secondary findings are identified. Results: A retrospective study was performed on 40 patients with a diagnostic rate of 40%. All the known genes that were previously considered as disease causing were correctly identified in the final inherit model output lists. In previously undiagnosed cases, we had no additional yield. Conclusion: This unique, intuitive and user-friendly tool to assists medical doctors in the clinical genomics diagnostic process is openly available at https://bioinformatics.ibioba-mpsp-conicet.gov.ar/GenIO/.Fil: Koile, Daniel Isaac. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Córdoba, Marta. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: de Sousa Serro, Maximiliano Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Kauffman, Marcelo Andres. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Yankilevich, Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaBioMed Central2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91268Koile, Daniel Isaac; Córdoba, Marta; de Sousa Serro, Maximiliano Guillermo; Kauffman, Marcelo Andres; Yankilevich, Patricio; GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases; BioMed Central; BMC Bioinformatics; 19; 1; 1-20181471-2105CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2027-3info:eu-repo/semantics/altIdentifier/doi/10.1186/s12859-018-2027-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:56Zoai:ri.conicet.gov.ar:11336/91268instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:56.619CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases |
title |
GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases |
spellingShingle |
GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases Koile, Daniel Isaac BIOINFORMATICS CLINICAL INFORMATICS EXOME SEQUENCING GENOME SEQUENCING RARE DISEASE VARIANT ANALYSIS |
title_short |
GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases |
title_full |
GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases |
title_fullStr |
GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases |
title_full_unstemmed |
GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases |
title_sort |
GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases |
dc.creator.none.fl_str_mv |
Koile, Daniel Isaac Córdoba, Marta de Sousa Serro, Maximiliano Guillermo Kauffman, Marcelo Andres Yankilevich, Patricio |
author |
Koile, Daniel Isaac |
author_facet |
Koile, Daniel Isaac Córdoba, Marta de Sousa Serro, Maximiliano Guillermo Kauffman, Marcelo Andres Yankilevich, Patricio |
author_role |
author |
author2 |
Córdoba, Marta de Sousa Serro, Maximiliano Guillermo Kauffman, Marcelo Andres Yankilevich, Patricio |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
BIOINFORMATICS CLINICAL INFORMATICS EXOME SEQUENCING GENOME SEQUENCING RARE DISEASE VARIANT ANALYSIS |
topic |
BIOINFORMATICS CLINICAL INFORMATICS EXOME SEQUENCING GENOME SEQUENCING RARE DISEASE VARIANT ANALYSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Background: GenIO is a novel web-server, designed to assist clinical genomics researchers and medical doctors in the diagnostic process of rare genetic diseases. The tool identifies the most probable variants causing a rare disease, using the genomic and clinical information provided by a medical practitioner. Variants identified in a whole-genome, whole-exome or target sequencing studies are annotated, classified and filtered by clinical significance. Candidate genes associated with the patient's symptoms, suspected disease and complementary findings are identified to obtain a small manageable number of the most probable recessive and dominant candidate gene variants associated with the rare disease case. Additionally, following the American College of Medical Genetics and Genomics and the Association of Molecular Pathology (ACMG-AMP) guidelines and recommendations, all potentially pathogenic variants that might be contributing to disease and secondary findings are identified. Results: A retrospective study was performed on 40 patients with a diagnostic rate of 40%. All the known genes that were previously considered as disease causing were correctly identified in the final inherit model output lists. In previously undiagnosed cases, we had no additional yield. Conclusion: This unique, intuitive and user-friendly tool to assists medical doctors in the clinical genomics diagnostic process is openly available at https://bioinformatics.ibioba-mpsp-conicet.gov.ar/GenIO/. Fil: Koile, Daniel Isaac. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina Fil: Córdoba, Marta. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina Fil: de Sousa Serro, Maximiliano Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina Fil: Kauffman, Marcelo Andres. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina Fil: Yankilevich, Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina |
description |
Background: GenIO is a novel web-server, designed to assist clinical genomics researchers and medical doctors in the diagnostic process of rare genetic diseases. The tool identifies the most probable variants causing a rare disease, using the genomic and clinical information provided by a medical practitioner. Variants identified in a whole-genome, whole-exome or target sequencing studies are annotated, classified and filtered by clinical significance. Candidate genes associated with the patient's symptoms, suspected disease and complementary findings are identified to obtain a small manageable number of the most probable recessive and dominant candidate gene variants associated with the rare disease case. Additionally, following the American College of Medical Genetics and Genomics and the Association of Molecular Pathology (ACMG-AMP) guidelines and recommendations, all potentially pathogenic variants that might be contributing to disease and secondary findings are identified. Results: A retrospective study was performed on 40 patients with a diagnostic rate of 40%. All the known genes that were previously considered as disease causing were correctly identified in the final inherit model output lists. In previously undiagnosed cases, we had no additional yield. Conclusion: This unique, intuitive and user-friendly tool to assists medical doctors in the clinical genomics diagnostic process is openly available at https://bioinformatics.ibioba-mpsp-conicet.gov.ar/GenIO/. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/91268 Koile, Daniel Isaac; Córdoba, Marta; de Sousa Serro, Maximiliano Guillermo; Kauffman, Marcelo Andres; Yankilevich, Patricio; GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases; BioMed Central; BMC Bioinformatics; 19; 1; 1-2018 1471-2105 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/91268 |
identifier_str_mv |
Koile, Daniel Isaac; Córdoba, Marta; de Sousa Serro, Maximiliano Guillermo; Kauffman, Marcelo Andres; Yankilevich, Patricio; GenIO: A phenotype-genotype analysis web server for clinical genomics of rare diseases; BioMed Central; BMC Bioinformatics; 19; 1; 1-2018 1471-2105 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2027-3 info:eu-repo/semantics/altIdentifier/doi/10.1186/s12859-018-2027-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
BioMed Central |
publisher.none.fl_str_mv |
BioMed Central |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613413396807680 |
score |
13.070432 |