Convergence of the barycentre of measures from Fuchsian action groups

Autores
Meson, Alejandro Mario; Vericat, Fernando
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove the pointwise ergodic convergence of the sequence of barycentres of empirical measures which are defined from the action of Fuchsian groups and by maps valuated in CAT(0)−spaces. A result of this nature was established by Austin from actions of amenable groups and defining the empirical measures from Følner sequences. Here we de- fine different sequences of barycentres, in particular we do not consider a topological structure on the group and Følner sequences.
Fil: Meson, Alejandro Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Materia
ERGODIC CONVERGENCE
EMPIRICAL MEASURES
BARYCENTRES
FUCHSIAN GROUPS
FOLNER SEQUENCES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23511

id CONICETDig_2c7242da5bba82f867e0b1e9b641abb3
oai_identifier_str oai:ri.conicet.gov.ar:11336/23511
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Convergence of the barycentre of measures from Fuchsian action groupsMeson, Alejandro MarioVericat, FernandoERGODIC CONVERGENCEEMPIRICAL MEASURESBARYCENTRESFUCHSIAN GROUPSFOLNER SEQUENCEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove the pointwise ergodic convergence of the sequence of barycentres of empirical measures which are defined from the action of Fuchsian groups and by maps valuated in CAT(0)−spaces. A result of this nature was established by Austin from actions of amenable groups and defining the empirical measures from Følner sequences. Here we de- fine different sequences of barycentres, in particular we do not consider a topological structure on the group and Følner sequences.Fil: Meson, Alejandro Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaGeometry Balkan Press2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23511Meson, Alejandro Mario; Vericat, Fernando; Convergence of the barycentre of measures from Fuchsian action groups; Geometry Balkan Press; Balkan Society of Geometers Proceedings; 20; 7-2013; 9-151843-2654CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.mathem.pub.ro/proc/bsgp-20/K20-me.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:13:14Zoai:ri.conicet.gov.ar:11336/23511instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:13:14.784CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Convergence of the barycentre of measures from Fuchsian action groups
title Convergence of the barycentre of measures from Fuchsian action groups
spellingShingle Convergence of the barycentre of measures from Fuchsian action groups
Meson, Alejandro Mario
ERGODIC CONVERGENCE
EMPIRICAL MEASURES
BARYCENTRES
FUCHSIAN GROUPS
FOLNER SEQUENCES
title_short Convergence of the barycentre of measures from Fuchsian action groups
title_full Convergence of the barycentre of measures from Fuchsian action groups
title_fullStr Convergence of the barycentre of measures from Fuchsian action groups
title_full_unstemmed Convergence of the barycentre of measures from Fuchsian action groups
title_sort Convergence of the barycentre of measures from Fuchsian action groups
dc.creator.none.fl_str_mv Meson, Alejandro Mario
Vericat, Fernando
author Meson, Alejandro Mario
author_facet Meson, Alejandro Mario
Vericat, Fernando
author_role author
author2 Vericat, Fernando
author2_role author
dc.subject.none.fl_str_mv ERGODIC CONVERGENCE
EMPIRICAL MEASURES
BARYCENTRES
FUCHSIAN GROUPS
FOLNER SEQUENCES
topic ERGODIC CONVERGENCE
EMPIRICAL MEASURES
BARYCENTRES
FUCHSIAN GROUPS
FOLNER SEQUENCES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove the pointwise ergodic convergence of the sequence of barycentres of empirical measures which are defined from the action of Fuchsian groups and by maps valuated in CAT(0)−spaces. A result of this nature was established by Austin from actions of amenable groups and defining the empirical measures from Følner sequences. Here we de- fine different sequences of barycentres, in particular we do not consider a topological structure on the group and Følner sequences.
Fil: Meson, Alejandro Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
description We prove the pointwise ergodic convergence of the sequence of barycentres of empirical measures which are defined from the action of Fuchsian groups and by maps valuated in CAT(0)−spaces. A result of this nature was established by Austin from actions of amenable groups and defining the empirical measures from Følner sequences. Here we de- fine different sequences of barycentres, in particular we do not consider a topological structure on the group and Følner sequences.
publishDate 2013
dc.date.none.fl_str_mv 2013-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23511
Meson, Alejandro Mario; Vericat, Fernando; Convergence of the barycentre of measures from Fuchsian action groups; Geometry Balkan Press; Balkan Society of Geometers Proceedings; 20; 7-2013; 9-15
1843-2654
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23511
identifier_str_mv Meson, Alejandro Mario; Vericat, Fernando; Convergence of the barycentre of measures from Fuchsian action groups; Geometry Balkan Press; Balkan Society of Geometers Proceedings; 20; 7-2013; 9-15
1843-2654
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.mathem.pub.ro/proc/bsgp-20/K20-me.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Geometry Balkan Press
publisher.none.fl_str_mv Geometry Balkan Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980698148831232
score 12.993085