Planet formation and stability in polar circumbinary discs
- Autores
- Cuello, Nicolas; Giuppone, Cristian Andrés
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Dynamical studies suggest that most circumbinary discs (CBDs) should be coplanar (i.e. the rotation vectors of the binary and the disc should be aligned). However, some theoretical works show that under certain conditions a CBD can become polar, which means that its rotation vector is orthogonal with respect to the binary orbital plane. Interestingly, very recent observations show that polar CBDs exist in nature (e.g. HD 98800). Aims. We test the predictions of CBD alignment around eccentric binaries based on linear theory. In particular, we compare prograde and retrograde CBD configurations. Then, assuming planets form in these systems, we thoroughly characterise the orbital behaviour and stability of misaligned (P-type) particles. This is done for massless and massive particles. Methods. The evolution of the CBD alignment for various configurations was modelled through three-dimensional hydrodynamical simulations. For the orbital characterisation and the analysis stability, we relied on long-term N-body integrations and structure and chaos indicators, such as Δe and MEGNO. Results. We confirm previous analytical predictions on CBD alignment, but find an unexpected symmetry breaking between prograde and retrograde configurations. More specifically, we observe polar alignment for a retrograde misaligned CBD that was expected to become coplanar with respect to the binary disc plane. Therefore, the likelihood of becoming polar for a highly misaligned CBD is higher than previously thought. Regarding the stability of circumbinary P-type planets (also know as Tatooines), polar orbits are stable over a wide range of binary parameters. In particular, for binary eccentricities below 0.4 the orbits are stable for any value of the binary mass ratio. In the absence of gas, planets with masses below 10-5 M have negligible effects on the binary orbit. Finally, we suggest that mildly eccentric equal-mass binaries should be searched for polar Tatooines.
Fil: Cuello, Nicolas. Pontificia Universidad Católica de Chile; Chile
Fil: Giuppone, Cristian Andrés. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina - Materia
-
BINARIES: GENERAL
HYDRODYNAMICS
METHODS: NUMERICAL
PLANETS AND SATELLITES: DYNAMICAL EVOLUTION AND STABILITY
PROTOPLANETARY DISKS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/119781
Ver los metadatos del registro completo
id |
CONICETDig_2c546e5068d6241fed65aea9951df7fd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/119781 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Planet formation and stability in polar circumbinary discsCuello, NicolasGiuppone, Cristian AndrésBINARIES: GENERALHYDRODYNAMICSMETHODS: NUMERICALPLANETS AND SATELLITES: DYNAMICAL EVOLUTION AND STABILITYPROTOPLANETARY DISKShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Dynamical studies suggest that most circumbinary discs (CBDs) should be coplanar (i.e. the rotation vectors of the binary and the disc should be aligned). However, some theoretical works show that under certain conditions a CBD can become polar, which means that its rotation vector is orthogonal with respect to the binary orbital plane. Interestingly, very recent observations show that polar CBDs exist in nature (e.g. HD 98800). Aims. We test the predictions of CBD alignment around eccentric binaries based on linear theory. In particular, we compare prograde and retrograde CBD configurations. Then, assuming planets form in these systems, we thoroughly characterise the orbital behaviour and stability of misaligned (P-type) particles. This is done for massless and massive particles. Methods. The evolution of the CBD alignment for various configurations was modelled through three-dimensional hydrodynamical simulations. For the orbital characterisation and the analysis stability, we relied on long-term N-body integrations and structure and chaos indicators, such as Δe and MEGNO. Results. We confirm previous analytical predictions on CBD alignment, but find an unexpected symmetry breaking between prograde and retrograde configurations. More specifically, we observe polar alignment for a retrograde misaligned CBD that was expected to become coplanar with respect to the binary disc plane. Therefore, the likelihood of becoming polar for a highly misaligned CBD is higher than previously thought. Regarding the stability of circumbinary P-type planets (also know as Tatooines), polar orbits are stable over a wide range of binary parameters. In particular, for binary eccentricities below 0.4 the orbits are stable for any value of the binary mass ratio. In the absence of gas, planets with masses below 10-5 M have negligible effects on the binary orbit. Finally, we suggest that mildly eccentric equal-mass binaries should be searched for polar Tatooines.Fil: Cuello, Nicolas. Pontificia Universidad Católica de Chile; ChileFil: Giuppone, Cristian Andrés. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaEDP Sciences2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/119781Cuello, Nicolas; Giuppone, Cristian Andrés; Planet formation and stability in polar circumbinary discs; EDP Sciences; Astronomy and Astrophysics; 628; 8-2019; 1-90004-63611432-0746CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/full_html/2019/08/aa33976-18/aa33976-18.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201833976info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:04Zoai:ri.conicet.gov.ar:11336/119781instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:04.33CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Planet formation and stability in polar circumbinary discs |
title |
Planet formation and stability in polar circumbinary discs |
spellingShingle |
Planet formation and stability in polar circumbinary discs Cuello, Nicolas BINARIES: GENERAL HYDRODYNAMICS METHODS: NUMERICAL PLANETS AND SATELLITES: DYNAMICAL EVOLUTION AND STABILITY PROTOPLANETARY DISKS |
title_short |
Planet formation and stability in polar circumbinary discs |
title_full |
Planet formation and stability in polar circumbinary discs |
title_fullStr |
Planet formation and stability in polar circumbinary discs |
title_full_unstemmed |
Planet formation and stability in polar circumbinary discs |
title_sort |
Planet formation and stability in polar circumbinary discs |
dc.creator.none.fl_str_mv |
Cuello, Nicolas Giuppone, Cristian Andrés |
author |
Cuello, Nicolas |
author_facet |
Cuello, Nicolas Giuppone, Cristian Andrés |
author_role |
author |
author2 |
Giuppone, Cristian Andrés |
author2_role |
author |
dc.subject.none.fl_str_mv |
BINARIES: GENERAL HYDRODYNAMICS METHODS: NUMERICAL PLANETS AND SATELLITES: DYNAMICAL EVOLUTION AND STABILITY PROTOPLANETARY DISKS |
topic |
BINARIES: GENERAL HYDRODYNAMICS METHODS: NUMERICAL PLANETS AND SATELLITES: DYNAMICAL EVOLUTION AND STABILITY PROTOPLANETARY DISKS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Dynamical studies suggest that most circumbinary discs (CBDs) should be coplanar (i.e. the rotation vectors of the binary and the disc should be aligned). However, some theoretical works show that under certain conditions a CBD can become polar, which means that its rotation vector is orthogonal with respect to the binary orbital plane. Interestingly, very recent observations show that polar CBDs exist in nature (e.g. HD 98800). Aims. We test the predictions of CBD alignment around eccentric binaries based on linear theory. In particular, we compare prograde and retrograde CBD configurations. Then, assuming planets form in these systems, we thoroughly characterise the orbital behaviour and stability of misaligned (P-type) particles. This is done for massless and massive particles. Methods. The evolution of the CBD alignment for various configurations was modelled through three-dimensional hydrodynamical simulations. For the orbital characterisation and the analysis stability, we relied on long-term N-body integrations and structure and chaos indicators, such as Δe and MEGNO. Results. We confirm previous analytical predictions on CBD alignment, but find an unexpected symmetry breaking between prograde and retrograde configurations. More specifically, we observe polar alignment for a retrograde misaligned CBD that was expected to become coplanar with respect to the binary disc plane. Therefore, the likelihood of becoming polar for a highly misaligned CBD is higher than previously thought. Regarding the stability of circumbinary P-type planets (also know as Tatooines), polar orbits are stable over a wide range of binary parameters. In particular, for binary eccentricities below 0.4 the orbits are stable for any value of the binary mass ratio. In the absence of gas, planets with masses below 10-5 M have negligible effects on the binary orbit. Finally, we suggest that mildly eccentric equal-mass binaries should be searched for polar Tatooines. Fil: Cuello, Nicolas. Pontificia Universidad Católica de Chile; Chile Fil: Giuppone, Cristian Andrés. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina |
description |
Dynamical studies suggest that most circumbinary discs (CBDs) should be coplanar (i.e. the rotation vectors of the binary and the disc should be aligned). However, some theoretical works show that under certain conditions a CBD can become polar, which means that its rotation vector is orthogonal with respect to the binary orbital plane. Interestingly, very recent observations show that polar CBDs exist in nature (e.g. HD 98800). Aims. We test the predictions of CBD alignment around eccentric binaries based on linear theory. In particular, we compare prograde and retrograde CBD configurations. Then, assuming planets form in these systems, we thoroughly characterise the orbital behaviour and stability of misaligned (P-type) particles. This is done for massless and massive particles. Methods. The evolution of the CBD alignment for various configurations was modelled through three-dimensional hydrodynamical simulations. For the orbital characterisation and the analysis stability, we relied on long-term N-body integrations and structure and chaos indicators, such as Δe and MEGNO. Results. We confirm previous analytical predictions on CBD alignment, but find an unexpected symmetry breaking between prograde and retrograde configurations. More specifically, we observe polar alignment for a retrograde misaligned CBD that was expected to become coplanar with respect to the binary disc plane. Therefore, the likelihood of becoming polar for a highly misaligned CBD is higher than previously thought. Regarding the stability of circumbinary P-type planets (also know as Tatooines), polar orbits are stable over a wide range of binary parameters. In particular, for binary eccentricities below 0.4 the orbits are stable for any value of the binary mass ratio. In the absence of gas, planets with masses below 10-5 M have negligible effects on the binary orbit. Finally, we suggest that mildly eccentric equal-mass binaries should be searched for polar Tatooines. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/119781 Cuello, Nicolas; Giuppone, Cristian Andrés; Planet formation and stability in polar circumbinary discs; EDP Sciences; Astronomy and Astrophysics; 628; 8-2019; 1-9 0004-6361 1432-0746 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/119781 |
identifier_str_mv |
Cuello, Nicolas; Giuppone, Cristian Andrés; Planet formation and stability in polar circumbinary discs; EDP Sciences; Astronomy and Astrophysics; 628; 8-2019; 1-9 0004-6361 1432-0746 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/full_html/2019/08/aa33976-18/aa33976-18.html info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201833976 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613571491659776 |
score |
13.070432 |