Subduction Zone Mantle Enrichment by Fluids and Zr-Hf-depleted Crustal Melts as Indicated by Backarc Basalts of the Southern Volcanic Zone, Argentina
- Autores
- Holm, Paul M.; Søager, Nina; Mads, Alfastsen; Bertotto, Gustavo Walter
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We aim to identify the components metasomatizing the mantle above the subducting Nazca plate under part of the Andean Southern Volcanic Zone (SVZ). We present new major and ICP-MS trace element and Sr, Nd and high-precision Pb isotope analyses of primitive olivine-phyric alkali basalts from the Northern Segment Volcanic Field, part of the Payenia province in the backarc of the Transitional SVZ. One new 40Ar–39Ar age determination confirms the Late Pleistocene age of this most northerly part of the province. All analysed rocks have typical subduction zone type incompatible element enrichment, and the rocks of the Northern Segment, together with the neighbouring Nevado Volcanic Field, have isotopic compositions intermediate between adjacent Transitional SVZ arc rocks and southern Payenia OIB-type basaltic rocks. Modelling the Ba–Th–Sm variation we demonstrate that fluids as well as 1–2% melts of upper continental crust (UCC) enriched their mantle sources, and La–Nb–Sm variations additionally indicate that the pre-metasomatic sources ranged from strongly depleted to undepleted mantle. Low Eu/Eu* and Sr/Nd also show evidence for a UCC component in the source. The contribution of Chile Trench sediments to the magmas seems insignificant. The Zr/Sm and Hf/Sm ratios are relatively low in many of the Northern Segment rocks, ranging down to 17 and 0.45, respectively, which, together with relatively high Th/U, is argued to indicate that the metasomatizing crustal melts were derived by partial melting of subducted UCC that had residual zircon, in contrast to the UCC melts added to Transitional SVZ arc magmas. Mixing between depleted and undepleted mantle, enriched by UCC and fluids, is suggested by Sr, Nd and Pb isotopes of the Northern Segment and Nevado magmas. The metasomatized undepleted mantle south of the Northern Segment is suggested to be part of upwelling OIB-type mantle, whereas the pre-metasomatically depleted mantle also can be found as a component in some arc rocks. The fluid-borne enrichment seems to have been derived from South Atlantic wedge mantle with no significant transfer of solubles in the slab fluids from the subducting altered Pacific oceanic crust to the wedge. The Northern Segment magmatism is proposed to be related to the steepening of Nazca plate subduction in the Pleistocene after a shallow slab period, where melts of subducted UCC plus slab fluids metasomatized the overlying depleted wedge mantle. During this steepening, the enriched depleted and undepleted mantle mixed or interacted, and yielded the Northern Segment and Nevado magmas.
Fil: Holm, Paul M.. Universidad de Copenhagen; Dinamarca
Fil: Søager, Nina. Universidad de Copenhagen; Dinamarca. Geomar-helmholtz Centre For Ocean Research Kiel; Alemania
Fil: Mads, Alfastsen. Universidad de Copenhagen; Dinamarca
Fil: Bertotto, Gustavo Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina - Materia
-
Andean Volcanism
Southern Volcanic Zone
Mantle Enrichment
Geochemical Modelling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19240
Ver los metadatos del registro completo
id |
CONICETDig_2c325602d64d5025fc2d236d65dc61b2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19240 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Subduction Zone Mantle Enrichment by Fluids and Zr-Hf-depleted Crustal Melts as Indicated by Backarc Basalts of the Southern Volcanic Zone, ArgentinaHolm, Paul M.Søager, NinaMads, AlfastsenBertotto, Gustavo WalterAndean VolcanismSouthern Volcanic ZoneMantle EnrichmentGeochemical Modellinghttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We aim to identify the components metasomatizing the mantle above the subducting Nazca plate under part of the Andean Southern Volcanic Zone (SVZ). We present new major and ICP-MS trace element and Sr, Nd and high-precision Pb isotope analyses of primitive olivine-phyric alkali basalts from the Northern Segment Volcanic Field, part of the Payenia province in the backarc of the Transitional SVZ. One new 40Ar–39Ar age determination confirms the Late Pleistocene age of this most northerly part of the province. All analysed rocks have typical subduction zone type incompatible element enrichment, and the rocks of the Northern Segment, together with the neighbouring Nevado Volcanic Field, have isotopic compositions intermediate between adjacent Transitional SVZ arc rocks and southern Payenia OIB-type basaltic rocks. Modelling the Ba–Th–Sm variation we demonstrate that fluids as well as 1–2% melts of upper continental crust (UCC) enriched their mantle sources, and La–Nb–Sm variations additionally indicate that the pre-metasomatic sources ranged from strongly depleted to undepleted mantle. Low Eu/Eu* and Sr/Nd also show evidence for a UCC component in the source. The contribution of Chile Trench sediments to the magmas seems insignificant. The Zr/Sm and Hf/Sm ratios are relatively low in many of the Northern Segment rocks, ranging down to 17 and 0.45, respectively, which, together with relatively high Th/U, is argued to indicate that the metasomatizing crustal melts were derived by partial melting of subducted UCC that had residual zircon, in contrast to the UCC melts added to Transitional SVZ arc magmas. Mixing between depleted and undepleted mantle, enriched by UCC and fluids, is suggested by Sr, Nd and Pb isotopes of the Northern Segment and Nevado magmas. The metasomatized undepleted mantle south of the Northern Segment is suggested to be part of upwelling OIB-type mantle, whereas the pre-metasomatically depleted mantle also can be found as a component in some arc rocks. The fluid-borne enrichment seems to have been derived from South Atlantic wedge mantle with no significant transfer of solubles in the slab fluids from the subducting altered Pacific oceanic crust to the wedge. The Northern Segment magmatism is proposed to be related to the steepening of Nazca plate subduction in the Pleistocene after a shallow slab period, where melts of subducted UCC plus slab fluids metasomatized the overlying depleted wedge mantle. During this steepening, the enriched depleted and undepleted mantle mixed or interacted, and yielded the Northern Segment and Nevado magmas.Fil: Holm, Paul M.. Universidad de Copenhagen; DinamarcaFil: Søager, Nina. Universidad de Copenhagen; Dinamarca. Geomar-helmholtz Centre For Ocean Research Kiel; AlemaniaFil: Mads, Alfastsen. Universidad de Copenhagen; DinamarcaFil: Bertotto, Gustavo Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaElsevier Science2016-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19240Holm, Paul M.; Søager, Nina; Mads, Alfastsen; Bertotto, Gustavo Walter; Subduction Zone Mantle Enrichment by Fluids and Zr-Hf-depleted Crustal Melts as Indicated by Backarc Basalts of the Southern Volcanic Zone, Argentina; Elsevier Science; Lithos; 262; 10-2016; 135-1520024-4937CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0024493716301426info:eu-repo/semantics/altIdentifier/doi/10.1016/j.lithos.2016.06.029info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:28Zoai:ri.conicet.gov.ar:11336/19240instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:28.855CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Subduction Zone Mantle Enrichment by Fluids and Zr-Hf-depleted Crustal Melts as Indicated by Backarc Basalts of the Southern Volcanic Zone, Argentina |
title |
Subduction Zone Mantle Enrichment by Fluids and Zr-Hf-depleted Crustal Melts as Indicated by Backarc Basalts of the Southern Volcanic Zone, Argentina |
spellingShingle |
Subduction Zone Mantle Enrichment by Fluids and Zr-Hf-depleted Crustal Melts as Indicated by Backarc Basalts of the Southern Volcanic Zone, Argentina Holm, Paul M. Andean Volcanism Southern Volcanic Zone Mantle Enrichment Geochemical Modelling |
title_short |
Subduction Zone Mantle Enrichment by Fluids and Zr-Hf-depleted Crustal Melts as Indicated by Backarc Basalts of the Southern Volcanic Zone, Argentina |
title_full |
Subduction Zone Mantle Enrichment by Fluids and Zr-Hf-depleted Crustal Melts as Indicated by Backarc Basalts of the Southern Volcanic Zone, Argentina |
title_fullStr |
Subduction Zone Mantle Enrichment by Fluids and Zr-Hf-depleted Crustal Melts as Indicated by Backarc Basalts of the Southern Volcanic Zone, Argentina |
title_full_unstemmed |
Subduction Zone Mantle Enrichment by Fluids and Zr-Hf-depleted Crustal Melts as Indicated by Backarc Basalts of the Southern Volcanic Zone, Argentina |
title_sort |
Subduction Zone Mantle Enrichment by Fluids and Zr-Hf-depleted Crustal Melts as Indicated by Backarc Basalts of the Southern Volcanic Zone, Argentina |
dc.creator.none.fl_str_mv |
Holm, Paul M. Søager, Nina Mads, Alfastsen Bertotto, Gustavo Walter |
author |
Holm, Paul M. |
author_facet |
Holm, Paul M. Søager, Nina Mads, Alfastsen Bertotto, Gustavo Walter |
author_role |
author |
author2 |
Søager, Nina Mads, Alfastsen Bertotto, Gustavo Walter |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Andean Volcanism Southern Volcanic Zone Mantle Enrichment Geochemical Modelling |
topic |
Andean Volcanism Southern Volcanic Zone Mantle Enrichment Geochemical Modelling |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We aim to identify the components metasomatizing the mantle above the subducting Nazca plate under part of the Andean Southern Volcanic Zone (SVZ). We present new major and ICP-MS trace element and Sr, Nd and high-precision Pb isotope analyses of primitive olivine-phyric alkali basalts from the Northern Segment Volcanic Field, part of the Payenia province in the backarc of the Transitional SVZ. One new 40Ar–39Ar age determination confirms the Late Pleistocene age of this most northerly part of the province. All analysed rocks have typical subduction zone type incompatible element enrichment, and the rocks of the Northern Segment, together with the neighbouring Nevado Volcanic Field, have isotopic compositions intermediate between adjacent Transitional SVZ arc rocks and southern Payenia OIB-type basaltic rocks. Modelling the Ba–Th–Sm variation we demonstrate that fluids as well as 1–2% melts of upper continental crust (UCC) enriched their mantle sources, and La–Nb–Sm variations additionally indicate that the pre-metasomatic sources ranged from strongly depleted to undepleted mantle. Low Eu/Eu* and Sr/Nd also show evidence for a UCC component in the source. The contribution of Chile Trench sediments to the magmas seems insignificant. The Zr/Sm and Hf/Sm ratios are relatively low in many of the Northern Segment rocks, ranging down to 17 and 0.45, respectively, which, together with relatively high Th/U, is argued to indicate that the metasomatizing crustal melts were derived by partial melting of subducted UCC that had residual zircon, in contrast to the UCC melts added to Transitional SVZ arc magmas. Mixing between depleted and undepleted mantle, enriched by UCC and fluids, is suggested by Sr, Nd and Pb isotopes of the Northern Segment and Nevado magmas. The metasomatized undepleted mantle south of the Northern Segment is suggested to be part of upwelling OIB-type mantle, whereas the pre-metasomatically depleted mantle also can be found as a component in some arc rocks. The fluid-borne enrichment seems to have been derived from South Atlantic wedge mantle with no significant transfer of solubles in the slab fluids from the subducting altered Pacific oceanic crust to the wedge. The Northern Segment magmatism is proposed to be related to the steepening of Nazca plate subduction in the Pleistocene after a shallow slab period, where melts of subducted UCC plus slab fluids metasomatized the overlying depleted wedge mantle. During this steepening, the enriched depleted and undepleted mantle mixed or interacted, and yielded the Northern Segment and Nevado magmas. Fil: Holm, Paul M.. Universidad de Copenhagen; Dinamarca Fil: Søager, Nina. Universidad de Copenhagen; Dinamarca. Geomar-helmholtz Centre For Ocean Research Kiel; Alemania Fil: Mads, Alfastsen. Universidad de Copenhagen; Dinamarca Fil: Bertotto, Gustavo Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina |
description |
We aim to identify the components metasomatizing the mantle above the subducting Nazca plate under part of the Andean Southern Volcanic Zone (SVZ). We present new major and ICP-MS trace element and Sr, Nd and high-precision Pb isotope analyses of primitive olivine-phyric alkali basalts from the Northern Segment Volcanic Field, part of the Payenia province in the backarc of the Transitional SVZ. One new 40Ar–39Ar age determination confirms the Late Pleistocene age of this most northerly part of the province. All analysed rocks have typical subduction zone type incompatible element enrichment, and the rocks of the Northern Segment, together with the neighbouring Nevado Volcanic Field, have isotopic compositions intermediate between adjacent Transitional SVZ arc rocks and southern Payenia OIB-type basaltic rocks. Modelling the Ba–Th–Sm variation we demonstrate that fluids as well as 1–2% melts of upper continental crust (UCC) enriched their mantle sources, and La–Nb–Sm variations additionally indicate that the pre-metasomatic sources ranged from strongly depleted to undepleted mantle. Low Eu/Eu* and Sr/Nd also show evidence for a UCC component in the source. The contribution of Chile Trench sediments to the magmas seems insignificant. The Zr/Sm and Hf/Sm ratios are relatively low in many of the Northern Segment rocks, ranging down to 17 and 0.45, respectively, which, together with relatively high Th/U, is argued to indicate that the metasomatizing crustal melts were derived by partial melting of subducted UCC that had residual zircon, in contrast to the UCC melts added to Transitional SVZ arc magmas. Mixing between depleted and undepleted mantle, enriched by UCC and fluids, is suggested by Sr, Nd and Pb isotopes of the Northern Segment and Nevado magmas. The metasomatized undepleted mantle south of the Northern Segment is suggested to be part of upwelling OIB-type mantle, whereas the pre-metasomatically depleted mantle also can be found as a component in some arc rocks. The fluid-borne enrichment seems to have been derived from South Atlantic wedge mantle with no significant transfer of solubles in the slab fluids from the subducting altered Pacific oceanic crust to the wedge. The Northern Segment magmatism is proposed to be related to the steepening of Nazca plate subduction in the Pleistocene after a shallow slab period, where melts of subducted UCC plus slab fluids metasomatized the overlying depleted wedge mantle. During this steepening, the enriched depleted and undepleted mantle mixed or interacted, and yielded the Northern Segment and Nevado magmas. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19240 Holm, Paul M.; Søager, Nina; Mads, Alfastsen; Bertotto, Gustavo Walter; Subduction Zone Mantle Enrichment by Fluids and Zr-Hf-depleted Crustal Melts as Indicated by Backarc Basalts of the Southern Volcanic Zone, Argentina; Elsevier Science; Lithos; 262; 10-2016; 135-152 0024-4937 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19240 |
identifier_str_mv |
Holm, Paul M.; Søager, Nina; Mads, Alfastsen; Bertotto, Gustavo Walter; Subduction Zone Mantle Enrichment by Fluids and Zr-Hf-depleted Crustal Melts as Indicated by Backarc Basalts of the Southern Volcanic Zone, Argentina; Elsevier Science; Lithos; 262; 10-2016; 135-152 0024-4937 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0024493716301426 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.lithos.2016.06.029 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613479116308480 |
score |
13.070432 |