Cofactor composition and function of a H 2 -sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopy
- Autores
- Roncaroli, Federico; Bill, Eckhard; Friedrich, Bärbel; Lenz, Oliver; Lubitz, Wolfgang; Pandelia, Maria Eirini
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The regulatory hydrogenase (RH) from Ralstonia eutropha H16 acts as a sensor for the detection of environmental H2 and regulates gene expression related to hydrogenase-mediated cellular metabolism. In marked contrast to prototypical energy-converting [NiFe] hydrogenases, the RH is apparently insensitive to inhibition by O2 and CO. While the physiological function of regulatory hydrogenases is well established, little is known about the redox cycling of the [NiFe] center and the nature of the iron–sulfur (FeS) clusters acting as electron relay. The absence of any FeS cluster signals in EPR had been attributed to their particular nature, whereas the observation of essentially only two active site redox states, namely Ni-SI and Ni-C, invoked a different operant mechanism. In the present work, we employ a combination of Mössbauer, FTIR and EPR spectroscopic techniques to study the RH, and the results are consistent with the presence of three [4Fe–4S] centers in the small subunit. In the as-isolated, oxidized RH all FeS clusters reside in the EPR-silent 2+ state. Incubation with H2 leads to reduction of two of the [4Fe–4S] clusters, whereas only strongly reducing agents lead to reduction of the third cluster, which is ascribed to be the [4Fe–4S] center in ‘proximal’ position to the [NiFe] center. In the two different active site redox states, the low-spin FeII exhibits distinct Mössbauer features attributed to changes in the electronic and geometric structure of the catalytic center. The results are discussed with regard to the spectral characteristics and physiological function of H2-sensing regulatory hydrogenases.
Fil: Roncaroli, Federico. Max Planck Institut für Chemische Energiekonversion; Alemania. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina
Fil: Bill, Eckhard. Max Planck Institut für Chemische Energiekonversion; Alemania
Fil: Friedrich, Bärbel. Universität zu Berlin; Alemania
Fil: Lenz, Oliver. Universität zu Berlin; Alemania. Technische Universität Berlin; Alemania
Fil: Lubitz, Wolfgang. Max Planck Institut für Chemische Energiekonversion; Alemania
Fil: Pandelia, Maria Eirini. Max Planck Institut für Chemische Energiekonversion; Alemania. State University of Pennsylvania; Estados Unidos - Materia
-
Regulatory Hydrogenase
pulse EPR
Mössbauer
FeS clusters - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/51940
Ver los metadatos del registro completo
id |
CONICETDig_2ba65350d6e1617d32dc27cb03f0d828 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/51940 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cofactor composition and function of a H 2 -sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopyRoncaroli, FedericoBill, EckhardFriedrich, BärbelLenz, OliverLubitz, WolfgangPandelia, Maria EiriniRegulatory Hydrogenasepulse EPRMössbauerFeS clustershttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The regulatory hydrogenase (RH) from Ralstonia eutropha H16 acts as a sensor for the detection of environmental H2 and regulates gene expression related to hydrogenase-mediated cellular metabolism. In marked contrast to prototypical energy-converting [NiFe] hydrogenases, the RH is apparently insensitive to inhibition by O2 and CO. While the physiological function of regulatory hydrogenases is well established, little is known about the redox cycling of the [NiFe] center and the nature of the iron–sulfur (FeS) clusters acting as electron relay. The absence of any FeS cluster signals in EPR had been attributed to their particular nature, whereas the observation of essentially only two active site redox states, namely Ni-SI and Ni-C, invoked a different operant mechanism. In the present work, we employ a combination of Mössbauer, FTIR and EPR spectroscopic techniques to study the RH, and the results are consistent with the presence of three [4Fe–4S] centers in the small subunit. In the as-isolated, oxidized RH all FeS clusters reside in the EPR-silent 2+ state. Incubation with H2 leads to reduction of two of the [4Fe–4S] clusters, whereas only strongly reducing agents lead to reduction of the third cluster, which is ascribed to be the [4Fe–4S] center in ‘proximal’ position to the [NiFe] center. In the two different active site redox states, the low-spin FeII exhibits distinct Mössbauer features attributed to changes in the electronic and geometric structure of the catalytic center. The results are discussed with regard to the spectral characteristics and physiological function of H2-sensing regulatory hydrogenases.Fil: Roncaroli, Federico. Max Planck Institut für Chemische Energiekonversion; Alemania. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaFil: Bill, Eckhard. Max Planck Institut für Chemische Energiekonversion; AlemaniaFil: Friedrich, Bärbel. Universität zu Berlin; AlemaniaFil: Lenz, Oliver. Universität zu Berlin; Alemania. Technische Universität Berlin; AlemaniaFil: Lubitz, Wolfgang. Max Planck Institut für Chemische Energiekonversion; AlemaniaFil: Pandelia, Maria Eirini. Max Planck Institut für Chemische Energiekonversion; Alemania. State University of Pennsylvania; Estados UnidosRoyal Society of Chemistry2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/51940Roncaroli, Federico; Bill, Eckhard; Friedrich, Bärbel; Lenz, Oliver; Lubitz, Wolfgang; et al.; Cofactor composition and function of a H 2 -sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopy; Royal Society of Chemistry; Chemical Science; 6; 8; 5-2015; 4495-45072041-6539CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C5SC01560Jinfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/content/articlelanding/2015/sc/c5sc01560jinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:31Zoai:ri.conicet.gov.ar:11336/51940instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:32.168CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cofactor composition and function of a H 2 -sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopy |
title |
Cofactor composition and function of a H 2 -sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopy |
spellingShingle |
Cofactor composition and function of a H 2 -sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopy Roncaroli, Federico Regulatory Hydrogenase pulse EPR Mössbauer FeS clusters |
title_short |
Cofactor composition and function of a H 2 -sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopy |
title_full |
Cofactor composition and function of a H 2 -sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopy |
title_fullStr |
Cofactor composition and function of a H 2 -sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopy |
title_full_unstemmed |
Cofactor composition and function of a H 2 -sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopy |
title_sort |
Cofactor composition and function of a H 2 -sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopy |
dc.creator.none.fl_str_mv |
Roncaroli, Federico Bill, Eckhard Friedrich, Bärbel Lenz, Oliver Lubitz, Wolfgang Pandelia, Maria Eirini |
author |
Roncaroli, Federico |
author_facet |
Roncaroli, Federico Bill, Eckhard Friedrich, Bärbel Lenz, Oliver Lubitz, Wolfgang Pandelia, Maria Eirini |
author_role |
author |
author2 |
Bill, Eckhard Friedrich, Bärbel Lenz, Oliver Lubitz, Wolfgang Pandelia, Maria Eirini |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Regulatory Hydrogenase pulse EPR Mössbauer FeS clusters |
topic |
Regulatory Hydrogenase pulse EPR Mössbauer FeS clusters |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The regulatory hydrogenase (RH) from Ralstonia eutropha H16 acts as a sensor for the detection of environmental H2 and regulates gene expression related to hydrogenase-mediated cellular metabolism. In marked contrast to prototypical energy-converting [NiFe] hydrogenases, the RH is apparently insensitive to inhibition by O2 and CO. While the physiological function of regulatory hydrogenases is well established, little is known about the redox cycling of the [NiFe] center and the nature of the iron–sulfur (FeS) clusters acting as electron relay. The absence of any FeS cluster signals in EPR had been attributed to their particular nature, whereas the observation of essentially only two active site redox states, namely Ni-SI and Ni-C, invoked a different operant mechanism. In the present work, we employ a combination of Mössbauer, FTIR and EPR spectroscopic techniques to study the RH, and the results are consistent with the presence of three [4Fe–4S] centers in the small subunit. In the as-isolated, oxidized RH all FeS clusters reside in the EPR-silent 2+ state. Incubation with H2 leads to reduction of two of the [4Fe–4S] clusters, whereas only strongly reducing agents lead to reduction of the third cluster, which is ascribed to be the [4Fe–4S] center in ‘proximal’ position to the [NiFe] center. In the two different active site redox states, the low-spin FeII exhibits distinct Mössbauer features attributed to changes in the electronic and geometric structure of the catalytic center. The results are discussed with regard to the spectral characteristics and physiological function of H2-sensing regulatory hydrogenases. Fil: Roncaroli, Federico. Max Planck Institut für Chemische Energiekonversion; Alemania. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina Fil: Bill, Eckhard. Max Planck Institut für Chemische Energiekonversion; Alemania Fil: Friedrich, Bärbel. Universität zu Berlin; Alemania Fil: Lenz, Oliver. Universität zu Berlin; Alemania. Technische Universität Berlin; Alemania Fil: Lubitz, Wolfgang. Max Planck Institut für Chemische Energiekonversion; Alemania Fil: Pandelia, Maria Eirini. Max Planck Institut für Chemische Energiekonversion; Alemania. State University of Pennsylvania; Estados Unidos |
description |
The regulatory hydrogenase (RH) from Ralstonia eutropha H16 acts as a sensor for the detection of environmental H2 and regulates gene expression related to hydrogenase-mediated cellular metabolism. In marked contrast to prototypical energy-converting [NiFe] hydrogenases, the RH is apparently insensitive to inhibition by O2 and CO. While the physiological function of regulatory hydrogenases is well established, little is known about the redox cycling of the [NiFe] center and the nature of the iron–sulfur (FeS) clusters acting as electron relay. The absence of any FeS cluster signals in EPR had been attributed to their particular nature, whereas the observation of essentially only two active site redox states, namely Ni-SI and Ni-C, invoked a different operant mechanism. In the present work, we employ a combination of Mössbauer, FTIR and EPR spectroscopic techniques to study the RH, and the results are consistent with the presence of three [4Fe–4S] centers in the small subunit. In the as-isolated, oxidized RH all FeS clusters reside in the EPR-silent 2+ state. Incubation with H2 leads to reduction of two of the [4Fe–4S] clusters, whereas only strongly reducing agents lead to reduction of the third cluster, which is ascribed to be the [4Fe–4S] center in ‘proximal’ position to the [NiFe] center. In the two different active site redox states, the low-spin FeII exhibits distinct Mössbauer features attributed to changes in the electronic and geometric structure of the catalytic center. The results are discussed with regard to the spectral characteristics and physiological function of H2-sensing regulatory hydrogenases. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/51940 Roncaroli, Federico; Bill, Eckhard; Friedrich, Bärbel; Lenz, Oliver; Lubitz, Wolfgang; et al.; Cofactor composition and function of a H 2 -sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopy; Royal Society of Chemistry; Chemical Science; 6; 8; 5-2015; 4495-4507 2041-6539 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/51940 |
identifier_str_mv |
Roncaroli, Federico; Bill, Eckhard; Friedrich, Bärbel; Lenz, Oliver; Lubitz, Wolfgang; et al.; Cofactor composition and function of a H 2 -sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopy; Royal Society of Chemistry; Chemical Science; 6; 8; 5-2015; 4495-4507 2041-6539 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/C5SC01560J info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/content/articlelanding/2015/sc/c5sc01560j |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613146428309504 |
score |
13.070432 |