Cómputo paralelo para la resolución de la multiplicación de matrices de gran tamaño
- Autores
- Díaz Acevedo, Karvin; Ponce de León, Alejo G.; Caymes Scutari, Paola Guadalupe; Bianchini, German
- Año de publicación
- 2021
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- La multiplicación se define dadas dos matrices A y B, se dicen multiplicables si el número de columnas de A coincide con el número de filas de B. En la nueva matriz C, los elementos Cij parten del producto que se obtiene multiplicando cada elemento de la fila i de la matriz A por cada elemento de la columna j de la matriz B y sumándolos. Cabe destacar que a medida que aumenta el tamaño de las matrices el volumen de cómputo también aumenta considerablemente.Nuestro objetivo con ésta investigación es poder determinar la forma más eficiente para realizar multiplicaciones de matrices de gran volumen, cálculos que son de gran utilidad en diversas áreas con en aplicaciones tales como resolución de sistemas de ecuaciones de muchas variables, cálculo numérico, y actualmente también utilizada con frecuencia en el cálculo de microarrays, en el área de la bioinformática. Para este estudio comparativo, se propone desarrollar dos algoritmos: uno que aproveche la capacidad de cómputo de un cluster de computadoras parte del Laboratorio de Investigación en Cómputo Paralelo/Distribuido (LICPaD) ubicado en la UTN-FRM, y otro algoritmo cuya ejecución sea secuencial. Una vez desarrollados, procederemos a realizar una serie de pruebas con matrices de distintos tamaños y con distinta cantidad de nodos.Para concluir, luego de obtenidos los resultados de tiempos de cálculo para cada experimento podremos realizar un análisis de métricas como el Speedup, la Eficiencia, el Balanceo de Carga, etc., y en base a ellos determinar en qué medida o en qué casos el cómputo paralelo resulta la forma más conveniente y/o eficiente para este cálculo, y también implementar mejoras y optimizaciones en los algoritmos utilizados.
Fil: Díaz Acevedo, Karvin. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina
Fil: Ponce de León, Alejo G.. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina
Fil: Caymes Scutari, Paola Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina
Fil: Bianchini, German. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina
Congreso de Investigaciones y Desarrollo en Tecnología y Ciencia
Villa María
Argentina
Universidad Tecnológica Nacional. Facultad Regional Villa María. Secretaría de Ciencia, Tecnología y Posgrado - Materia
-
MULTIPLICACIÓN
MATRICES
EFICIENTE
ALGORITMOS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/180448
Ver los metadatos del registro completo
id |
CONICETDig_2ab10e37b17cb56663e377acaabd9774 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/180448 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cómputo paralelo para la resolución de la multiplicación de matrices de gran tamañoDíaz Acevedo, KarvinPonce de León, Alejo G.Caymes Scutari, Paola GuadalupeBianchini, GermanMULTIPLICACIÓNMATRICESEFICIENTEALGORITMOShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1La multiplicación se define dadas dos matrices A y B, se dicen multiplicables si el número de columnas de A coincide con el número de filas de B. En la nueva matriz C, los elementos Cij parten del producto que se obtiene multiplicando cada elemento de la fila i de la matriz A por cada elemento de la columna j de la matriz B y sumándolos. Cabe destacar que a medida que aumenta el tamaño de las matrices el volumen de cómputo también aumenta considerablemente.Nuestro objetivo con ésta investigación es poder determinar la forma más eficiente para realizar multiplicaciones de matrices de gran volumen, cálculos que son de gran utilidad en diversas áreas con en aplicaciones tales como resolución de sistemas de ecuaciones de muchas variables, cálculo numérico, y actualmente también utilizada con frecuencia en el cálculo de microarrays, en el área de la bioinformática. Para este estudio comparativo, se propone desarrollar dos algoritmos: uno que aproveche la capacidad de cómputo de un cluster de computadoras parte del Laboratorio de Investigación en Cómputo Paralelo/Distribuido (LICPaD) ubicado en la UTN-FRM, y otro algoritmo cuya ejecución sea secuencial. Una vez desarrollados, procederemos a realizar una serie de pruebas con matrices de distintos tamaños y con distinta cantidad de nodos.Para concluir, luego de obtenidos los resultados de tiempos de cálculo para cada experimento podremos realizar un análisis de métricas como el Speedup, la Eficiencia, el Balanceo de Carga, etc., y en base a ellos determinar en qué medida o en qué casos el cómputo paralelo resulta la forma más conveniente y/o eficiente para este cálculo, y también implementar mejoras y optimizaciones en los algoritmos utilizados.Fil: Díaz Acevedo, Karvin. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; ArgentinaFil: Ponce de León, Alejo G.. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; ArgentinaFil: Caymes Scutari, Paola Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; ArgentinaFil: Bianchini, German. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; ArgentinaCongreso de Investigaciones y Desarrollo en Tecnología y CienciaVilla MaríaArgentinaUniversidad Tecnológica Nacional. Facultad Regional Villa María. Secretaría de Ciencia, Tecnología y PosgradoUniversidad Tecnológica NacionalCejas, Marcelo OscarGonella, Javier NicolásSensini, Fabián Marcelo2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180448Cómputo paralelo para la resolución de la multiplicación de matrices de gran tamaño; Congreso de Investigaciones y Desarrollo en Tecnología y Ciencia; Villa María; Argentina; 2021; 189-194978-987-4998-69-9CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://idetec.frvm.utn.edu.ar/#/libroActas/Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:53Zoai:ri.conicet.gov.ar:11336/180448instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:53.696CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cómputo paralelo para la resolución de la multiplicación de matrices de gran tamaño |
title |
Cómputo paralelo para la resolución de la multiplicación de matrices de gran tamaño |
spellingShingle |
Cómputo paralelo para la resolución de la multiplicación de matrices de gran tamaño Díaz Acevedo, Karvin MULTIPLICACIÓN MATRICES EFICIENTE ALGORITMOS |
title_short |
Cómputo paralelo para la resolución de la multiplicación de matrices de gran tamaño |
title_full |
Cómputo paralelo para la resolución de la multiplicación de matrices de gran tamaño |
title_fullStr |
Cómputo paralelo para la resolución de la multiplicación de matrices de gran tamaño |
title_full_unstemmed |
Cómputo paralelo para la resolución de la multiplicación de matrices de gran tamaño |
title_sort |
Cómputo paralelo para la resolución de la multiplicación de matrices de gran tamaño |
dc.creator.none.fl_str_mv |
Díaz Acevedo, Karvin Ponce de León, Alejo G. Caymes Scutari, Paola Guadalupe Bianchini, German |
author |
Díaz Acevedo, Karvin |
author_facet |
Díaz Acevedo, Karvin Ponce de León, Alejo G. Caymes Scutari, Paola Guadalupe Bianchini, German |
author_role |
author |
author2 |
Ponce de León, Alejo G. Caymes Scutari, Paola Guadalupe Bianchini, German |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Cejas, Marcelo Oscar Gonella, Javier Nicolás Sensini, Fabián Marcelo |
dc.subject.none.fl_str_mv |
MULTIPLICACIÓN MATRICES EFICIENTE ALGORITMOS |
topic |
MULTIPLICACIÓN MATRICES EFICIENTE ALGORITMOS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
La multiplicación se define dadas dos matrices A y B, se dicen multiplicables si el número de columnas de A coincide con el número de filas de B. En la nueva matriz C, los elementos Cij parten del producto que se obtiene multiplicando cada elemento de la fila i de la matriz A por cada elemento de la columna j de la matriz B y sumándolos. Cabe destacar que a medida que aumenta el tamaño de las matrices el volumen de cómputo también aumenta considerablemente.Nuestro objetivo con ésta investigación es poder determinar la forma más eficiente para realizar multiplicaciones de matrices de gran volumen, cálculos que son de gran utilidad en diversas áreas con en aplicaciones tales como resolución de sistemas de ecuaciones de muchas variables, cálculo numérico, y actualmente también utilizada con frecuencia en el cálculo de microarrays, en el área de la bioinformática. Para este estudio comparativo, se propone desarrollar dos algoritmos: uno que aproveche la capacidad de cómputo de un cluster de computadoras parte del Laboratorio de Investigación en Cómputo Paralelo/Distribuido (LICPaD) ubicado en la UTN-FRM, y otro algoritmo cuya ejecución sea secuencial. Una vez desarrollados, procederemos a realizar una serie de pruebas con matrices de distintos tamaños y con distinta cantidad de nodos.Para concluir, luego de obtenidos los resultados de tiempos de cálculo para cada experimento podremos realizar un análisis de métricas como el Speedup, la Eficiencia, el Balanceo de Carga, etc., y en base a ellos determinar en qué medida o en qué casos el cómputo paralelo resulta la forma más conveniente y/o eficiente para este cálculo, y también implementar mejoras y optimizaciones en los algoritmos utilizados. Fil: Díaz Acevedo, Karvin. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina Fil: Ponce de León, Alejo G.. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina Fil: Caymes Scutari, Paola Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina Fil: Bianchini, German. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina Congreso de Investigaciones y Desarrollo en Tecnología y Ciencia Villa María Argentina Universidad Tecnológica Nacional. Facultad Regional Villa María. Secretaría de Ciencia, Tecnología y Posgrado |
description |
La multiplicación se define dadas dos matrices A y B, se dicen multiplicables si el número de columnas de A coincide con el número de filas de B. En la nueva matriz C, los elementos Cij parten del producto que se obtiene multiplicando cada elemento de la fila i de la matriz A por cada elemento de la columna j de la matriz B y sumándolos. Cabe destacar que a medida que aumenta el tamaño de las matrices el volumen de cómputo también aumenta considerablemente.Nuestro objetivo con ésta investigación es poder determinar la forma más eficiente para realizar multiplicaciones de matrices de gran volumen, cálculos que son de gran utilidad en diversas áreas con en aplicaciones tales como resolución de sistemas de ecuaciones de muchas variables, cálculo numérico, y actualmente también utilizada con frecuencia en el cálculo de microarrays, en el área de la bioinformática. Para este estudio comparativo, se propone desarrollar dos algoritmos: uno que aproveche la capacidad de cómputo de un cluster de computadoras parte del Laboratorio de Investigación en Cómputo Paralelo/Distribuido (LICPaD) ubicado en la UTN-FRM, y otro algoritmo cuya ejecución sea secuencial. Una vez desarrollados, procederemos a realizar una serie de pruebas con matrices de distintos tamaños y con distinta cantidad de nodos.Para concluir, luego de obtenidos los resultados de tiempos de cálculo para cada experimento podremos realizar un análisis de métricas como el Speedup, la Eficiencia, el Balanceo de Carga, etc., y en base a ellos determinar en qué medida o en qué casos el cómputo paralelo resulta la forma más conveniente y/o eficiente para este cálculo, y también implementar mejoras y optimizaciones en los algoritmos utilizados. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/180448 Cómputo paralelo para la resolución de la multiplicación de matrices de gran tamaño; Congreso de Investigaciones y Desarrollo en Tecnología y Ciencia; Villa María; Argentina; 2021; 189-194 978-987-4998-69-9 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/180448 |
identifier_str_mv |
Cómputo paralelo para la resolución de la multiplicación de matrices de gran tamaño; Congreso de Investigaciones y Desarrollo en Tecnología y Ciencia; Villa María; Argentina; 2021; 189-194 978-987-4998-69-9 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://idetec.frvm.utn.edu.ar/#/libroActas/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Universidad Tecnológica Nacional |
publisher.none.fl_str_mv |
Universidad Tecnológica Nacional |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613773729464320 |
score |
13.070432 |