Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series

Autores
De Marzo, Teresa; Pflugmacher, Dirk; Baumann, Matthias; Lambin, Eric F.; Gasparri, Nestor Ignacio; Kuemmerle, Tobias
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Forest loss in the tropics affects large areas, but whereas full forest conversions are routinely assessed, forest degradation patters remain often unclear. This is particularly so for the world's tropical dry forests, where remote sensing of forest disturbances is challenging due to high canopy complexity, strong phenology and climate variability, and diverse degradation drivers. Here, we used the full depth of the Landsat archive and devised an approach to detect disturbances related to forest degradation across the entire Argentine Dry Chaco (about 489,000 km2) over a 30-year timespan. We used annual time series of different spectral indices, summarized for three seasonal windows, and applied LandTrendr to temporally segment each time series. The resulting pixel-level forest disturbance metrics then served as input for a Random Forests classification which we used to produce an area-wide disturbance map, and associated yearly area estimates of disturbed forest. Finally, we evaluated disturbance trends in relation to climate and soil conditions. Our best model produced a disturbance map with an overall accuracy of 79%, with a balanced error distribution. A total of 8% (24,877 ± 860 km2) of the remaining forest in the Argentine Dry Chaco have been affected by forest disturbances between 1990 and 2017. Diverse spatial patterns of forest disturbances indicate a variety of agents driving disturbances. We also found the disturbed area to vary strongly between years, with larger areas being disturbed during drought years. Our approach shows that it is possible to robustly map forest disturbances in tropical dry forests using Landsat time series, and demonstrates the value of ensemble approaches to capture spectrally-complex and heterogeneous land-change processes. For the Chaco, a global deforestation hotspot, our analyses provide the first Landsat-based assessment of forest disturbance in remaining forests, highlighting the need to better consider such disturbances in assessments of carbon budgets and biodiversity change.
Fil: De Marzo, Teresa. Université Catholique de Louvain; Bélgica. Humboldt-Universität zu Berlin; Alemania
Fil: Pflugmacher, Dirk. Humboldt-Universität zu Berlin; Alemania
Fil: Baumann, Matthias. Humboldt-Universität zu Berlin; Alemania
Fil: Lambin, Eric F.. Université Catholique de Louvain; Bélgica. University of Stanford; Estados Unidos
Fil: Gasparri, Nestor Ignacio. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; Argentina
Fil: Kuemmerle, Tobias. Humboldt-Universität zu Berlin; Alemania
Materia
ENSEMBLE CLASSIFICATION
FOREST DEGRADATION
LANDTRENDR
RANDOM FORESTS
TRAJECTORY ANALYSES
TROPICAL DRY FORESTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/184076

id CONICETDig_299ad68160579b878fdbe27b7564f132
oai_identifier_str oai:ri.conicet.gov.ar:11336/184076
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time seriesDe Marzo, TeresaPflugmacher, DirkBaumann, MatthiasLambin, Eric F.Gasparri, Nestor IgnacioKuemmerle, TobiasENSEMBLE CLASSIFICATIONFOREST DEGRADATIONLANDTRENDRRANDOM FORESTSTRAJECTORY ANALYSESTROPICAL DRY FORESTShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Forest loss in the tropics affects large areas, but whereas full forest conversions are routinely assessed, forest degradation patters remain often unclear. This is particularly so for the world's tropical dry forests, where remote sensing of forest disturbances is challenging due to high canopy complexity, strong phenology and climate variability, and diverse degradation drivers. Here, we used the full depth of the Landsat archive and devised an approach to detect disturbances related to forest degradation across the entire Argentine Dry Chaco (about 489,000 km2) over a 30-year timespan. We used annual time series of different spectral indices, summarized for three seasonal windows, and applied LandTrendr to temporally segment each time series. The resulting pixel-level forest disturbance metrics then served as input for a Random Forests classification which we used to produce an area-wide disturbance map, and associated yearly area estimates of disturbed forest. Finally, we evaluated disturbance trends in relation to climate and soil conditions. Our best model produced a disturbance map with an overall accuracy of 79%, with a balanced error distribution. A total of 8% (24,877 ± 860 km2) of the remaining forest in the Argentine Dry Chaco have been affected by forest disturbances between 1990 and 2017. Diverse spatial patterns of forest disturbances indicate a variety of agents driving disturbances. We also found the disturbed area to vary strongly between years, with larger areas being disturbed during drought years. Our approach shows that it is possible to robustly map forest disturbances in tropical dry forests using Landsat time series, and demonstrates the value of ensemble approaches to capture spectrally-complex and heterogeneous land-change processes. For the Chaco, a global deforestation hotspot, our analyses provide the first Landsat-based assessment of forest disturbance in remaining forests, highlighting the need to better consider such disturbances in assessments of carbon budgets and biodiversity change.Fil: De Marzo, Teresa. Université Catholique de Louvain; Bélgica. Humboldt-Universität zu Berlin; AlemaniaFil: Pflugmacher, Dirk. Humboldt-Universität zu Berlin; AlemaniaFil: Baumann, Matthias. Humboldt-Universität zu Berlin; AlemaniaFil: Lambin, Eric F.. Université Catholique de Louvain; Bélgica. University of Stanford; Estados UnidosFil: Gasparri, Nestor Ignacio. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Kuemmerle, Tobias. Humboldt-Universität zu Berlin; AlemaniaElsevier Science2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/184076De Marzo, Teresa; Pflugmacher, Dirk; Baumann, Matthias; Lambin, Eric F.; Gasparri, Nestor Ignacio; et al.; Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series; Elsevier Science; Itc Journal; 98; 102310; 6-2021; 1-130303-24341872-826XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0303243421000179info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jag.2021.102310info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:07:45Zoai:ri.conicet.gov.ar:11336/184076instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:07:45.725CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series
title Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series
spellingShingle Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series
De Marzo, Teresa
ENSEMBLE CLASSIFICATION
FOREST DEGRADATION
LANDTRENDR
RANDOM FORESTS
TRAJECTORY ANALYSES
TROPICAL DRY FORESTS
title_short Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series
title_full Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series
title_fullStr Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series
title_full_unstemmed Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series
title_sort Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series
dc.creator.none.fl_str_mv De Marzo, Teresa
Pflugmacher, Dirk
Baumann, Matthias
Lambin, Eric F.
Gasparri, Nestor Ignacio
Kuemmerle, Tobias
author De Marzo, Teresa
author_facet De Marzo, Teresa
Pflugmacher, Dirk
Baumann, Matthias
Lambin, Eric F.
Gasparri, Nestor Ignacio
Kuemmerle, Tobias
author_role author
author2 Pflugmacher, Dirk
Baumann, Matthias
Lambin, Eric F.
Gasparri, Nestor Ignacio
Kuemmerle, Tobias
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv ENSEMBLE CLASSIFICATION
FOREST DEGRADATION
LANDTRENDR
RANDOM FORESTS
TRAJECTORY ANALYSES
TROPICAL DRY FORESTS
topic ENSEMBLE CLASSIFICATION
FOREST DEGRADATION
LANDTRENDR
RANDOM FORESTS
TRAJECTORY ANALYSES
TROPICAL DRY FORESTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Forest loss in the tropics affects large areas, but whereas full forest conversions are routinely assessed, forest degradation patters remain often unclear. This is particularly so for the world's tropical dry forests, where remote sensing of forest disturbances is challenging due to high canopy complexity, strong phenology and climate variability, and diverse degradation drivers. Here, we used the full depth of the Landsat archive and devised an approach to detect disturbances related to forest degradation across the entire Argentine Dry Chaco (about 489,000 km2) over a 30-year timespan. We used annual time series of different spectral indices, summarized for three seasonal windows, and applied LandTrendr to temporally segment each time series. The resulting pixel-level forest disturbance metrics then served as input for a Random Forests classification which we used to produce an area-wide disturbance map, and associated yearly area estimates of disturbed forest. Finally, we evaluated disturbance trends in relation to climate and soil conditions. Our best model produced a disturbance map with an overall accuracy of 79%, with a balanced error distribution. A total of 8% (24,877 ± 860 km2) of the remaining forest in the Argentine Dry Chaco have been affected by forest disturbances between 1990 and 2017. Diverse spatial patterns of forest disturbances indicate a variety of agents driving disturbances. We also found the disturbed area to vary strongly between years, with larger areas being disturbed during drought years. Our approach shows that it is possible to robustly map forest disturbances in tropical dry forests using Landsat time series, and demonstrates the value of ensemble approaches to capture spectrally-complex and heterogeneous land-change processes. For the Chaco, a global deforestation hotspot, our analyses provide the first Landsat-based assessment of forest disturbance in remaining forests, highlighting the need to better consider such disturbances in assessments of carbon budgets and biodiversity change.
Fil: De Marzo, Teresa. Université Catholique de Louvain; Bélgica. Humboldt-Universität zu Berlin; Alemania
Fil: Pflugmacher, Dirk. Humboldt-Universität zu Berlin; Alemania
Fil: Baumann, Matthias. Humboldt-Universität zu Berlin; Alemania
Fil: Lambin, Eric F.. Université Catholique de Louvain; Bélgica. University of Stanford; Estados Unidos
Fil: Gasparri, Nestor Ignacio. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; Argentina
Fil: Kuemmerle, Tobias. Humboldt-Universität zu Berlin; Alemania
description Forest loss in the tropics affects large areas, but whereas full forest conversions are routinely assessed, forest degradation patters remain often unclear. This is particularly so for the world's tropical dry forests, where remote sensing of forest disturbances is challenging due to high canopy complexity, strong phenology and climate variability, and diverse degradation drivers. Here, we used the full depth of the Landsat archive and devised an approach to detect disturbances related to forest degradation across the entire Argentine Dry Chaco (about 489,000 km2) over a 30-year timespan. We used annual time series of different spectral indices, summarized for three seasonal windows, and applied LandTrendr to temporally segment each time series. The resulting pixel-level forest disturbance metrics then served as input for a Random Forests classification which we used to produce an area-wide disturbance map, and associated yearly area estimates of disturbed forest. Finally, we evaluated disturbance trends in relation to climate and soil conditions. Our best model produced a disturbance map with an overall accuracy of 79%, with a balanced error distribution. A total of 8% (24,877 ± 860 km2) of the remaining forest in the Argentine Dry Chaco have been affected by forest disturbances between 1990 and 2017. Diverse spatial patterns of forest disturbances indicate a variety of agents driving disturbances. We also found the disturbed area to vary strongly between years, with larger areas being disturbed during drought years. Our approach shows that it is possible to robustly map forest disturbances in tropical dry forests using Landsat time series, and demonstrates the value of ensemble approaches to capture spectrally-complex and heterogeneous land-change processes. For the Chaco, a global deforestation hotspot, our analyses provide the first Landsat-based assessment of forest disturbance in remaining forests, highlighting the need to better consider such disturbances in assessments of carbon budgets and biodiversity change.
publishDate 2021
dc.date.none.fl_str_mv 2021-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/184076
De Marzo, Teresa; Pflugmacher, Dirk; Baumann, Matthias; Lambin, Eric F.; Gasparri, Nestor Ignacio; et al.; Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series; Elsevier Science; Itc Journal; 98; 102310; 6-2021; 1-13
0303-2434
1872-826X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/184076
identifier_str_mv De Marzo, Teresa; Pflugmacher, Dirk; Baumann, Matthias; Lambin, Eric F.; Gasparri, Nestor Ignacio; et al.; Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series; Elsevier Science; Itc Journal; 98; 102310; 6-2021; 1-13
0303-2434
1872-826X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0303243421000179
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jag.2021.102310
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782443931041792
score 12.982451