Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series
- Autores
- De Marzo, Teresa; Pflugmacher, Dirk; Baumann, Matthias; Lambin, Eric F.; Gasparri, Nestor Ignacio; Kuemmerle, Tobias
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Forest loss in the tropics affects large areas, but whereas full forest conversions are routinely assessed, forest degradation patters remain often unclear. This is particularly so for the world's tropical dry forests, where remote sensing of forest disturbances is challenging due to high canopy complexity, strong phenology and climate variability, and diverse degradation drivers. Here, we used the full depth of the Landsat archive and devised an approach to detect disturbances related to forest degradation across the entire Argentine Dry Chaco (about 489,000 km2) over a 30-year timespan. We used annual time series of different spectral indices, summarized for three seasonal windows, and applied LandTrendr to temporally segment each time series. The resulting pixel-level forest disturbance metrics then served as input for a Random Forests classification which we used to produce an area-wide disturbance map, and associated yearly area estimates of disturbed forest. Finally, we evaluated disturbance trends in relation to climate and soil conditions. Our best model produced a disturbance map with an overall accuracy of 79%, with a balanced error distribution. A total of 8% (24,877 ± 860 km2) of the remaining forest in the Argentine Dry Chaco have been affected by forest disturbances between 1990 and 2017. Diverse spatial patterns of forest disturbances indicate a variety of agents driving disturbances. We also found the disturbed area to vary strongly between years, with larger areas being disturbed during drought years. Our approach shows that it is possible to robustly map forest disturbances in tropical dry forests using Landsat time series, and demonstrates the value of ensemble approaches to capture spectrally-complex and heterogeneous land-change processes. For the Chaco, a global deforestation hotspot, our analyses provide the first Landsat-based assessment of forest disturbance in remaining forests, highlighting the need to better consider such disturbances in assessments of carbon budgets and biodiversity change.
Fil: De Marzo, Teresa. Université Catholique de Louvain; Bélgica. Humboldt-Universität zu Berlin; Alemania
Fil: Pflugmacher, Dirk. Humboldt-Universität zu Berlin; Alemania
Fil: Baumann, Matthias. Humboldt-Universität zu Berlin; Alemania
Fil: Lambin, Eric F.. Université Catholique de Louvain; Bélgica. University of Stanford; Estados Unidos
Fil: Gasparri, Nestor Ignacio. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; Argentina
Fil: Kuemmerle, Tobias. Humboldt-Universität zu Berlin; Alemania - Materia
-
ENSEMBLE CLASSIFICATION
FOREST DEGRADATION
LANDTRENDR
RANDOM FORESTS
TRAJECTORY ANALYSES
TROPICAL DRY FORESTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/184076
Ver los metadatos del registro completo
| id |
CONICETDig_299ad68160579b878fdbe27b7564f132 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/184076 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time seriesDe Marzo, TeresaPflugmacher, DirkBaumann, MatthiasLambin, Eric F.Gasparri, Nestor IgnacioKuemmerle, TobiasENSEMBLE CLASSIFICATIONFOREST DEGRADATIONLANDTRENDRRANDOM FORESTSTRAJECTORY ANALYSESTROPICAL DRY FORESTShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Forest loss in the tropics affects large areas, but whereas full forest conversions are routinely assessed, forest degradation patters remain often unclear. This is particularly so for the world's tropical dry forests, where remote sensing of forest disturbances is challenging due to high canopy complexity, strong phenology and climate variability, and diverse degradation drivers. Here, we used the full depth of the Landsat archive and devised an approach to detect disturbances related to forest degradation across the entire Argentine Dry Chaco (about 489,000 km2) over a 30-year timespan. We used annual time series of different spectral indices, summarized for three seasonal windows, and applied LandTrendr to temporally segment each time series. The resulting pixel-level forest disturbance metrics then served as input for a Random Forests classification which we used to produce an area-wide disturbance map, and associated yearly area estimates of disturbed forest. Finally, we evaluated disturbance trends in relation to climate and soil conditions. Our best model produced a disturbance map with an overall accuracy of 79%, with a balanced error distribution. A total of 8% (24,877 ± 860 km2) of the remaining forest in the Argentine Dry Chaco have been affected by forest disturbances between 1990 and 2017. Diverse spatial patterns of forest disturbances indicate a variety of agents driving disturbances. We also found the disturbed area to vary strongly between years, with larger areas being disturbed during drought years. Our approach shows that it is possible to robustly map forest disturbances in tropical dry forests using Landsat time series, and demonstrates the value of ensemble approaches to capture spectrally-complex and heterogeneous land-change processes. For the Chaco, a global deforestation hotspot, our analyses provide the first Landsat-based assessment of forest disturbance in remaining forests, highlighting the need to better consider such disturbances in assessments of carbon budgets and biodiversity change.Fil: De Marzo, Teresa. Université Catholique de Louvain; Bélgica. Humboldt-Universität zu Berlin; AlemaniaFil: Pflugmacher, Dirk. Humboldt-Universität zu Berlin; AlemaniaFil: Baumann, Matthias. Humboldt-Universität zu Berlin; AlemaniaFil: Lambin, Eric F.. Université Catholique de Louvain; Bélgica. University of Stanford; Estados UnidosFil: Gasparri, Nestor Ignacio. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Kuemmerle, Tobias. Humboldt-Universität zu Berlin; AlemaniaElsevier Science2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/184076De Marzo, Teresa; Pflugmacher, Dirk; Baumann, Matthias; Lambin, Eric F.; Gasparri, Nestor Ignacio; et al.; Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series; Elsevier Science; Itc Journal; 98; 102310; 6-2021; 1-130303-24341872-826XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0303243421000179info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jag.2021.102310info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:07:45Zoai:ri.conicet.gov.ar:11336/184076instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:07:45.725CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series |
| title |
Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series |
| spellingShingle |
Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series De Marzo, Teresa ENSEMBLE CLASSIFICATION FOREST DEGRADATION LANDTRENDR RANDOM FORESTS TRAJECTORY ANALYSES TROPICAL DRY FORESTS |
| title_short |
Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series |
| title_full |
Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series |
| title_fullStr |
Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series |
| title_full_unstemmed |
Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series |
| title_sort |
Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series |
| dc.creator.none.fl_str_mv |
De Marzo, Teresa Pflugmacher, Dirk Baumann, Matthias Lambin, Eric F. Gasparri, Nestor Ignacio Kuemmerle, Tobias |
| author |
De Marzo, Teresa |
| author_facet |
De Marzo, Teresa Pflugmacher, Dirk Baumann, Matthias Lambin, Eric F. Gasparri, Nestor Ignacio Kuemmerle, Tobias |
| author_role |
author |
| author2 |
Pflugmacher, Dirk Baumann, Matthias Lambin, Eric F. Gasparri, Nestor Ignacio Kuemmerle, Tobias |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
ENSEMBLE CLASSIFICATION FOREST DEGRADATION LANDTRENDR RANDOM FORESTS TRAJECTORY ANALYSES TROPICAL DRY FORESTS |
| topic |
ENSEMBLE CLASSIFICATION FOREST DEGRADATION LANDTRENDR RANDOM FORESTS TRAJECTORY ANALYSES TROPICAL DRY FORESTS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Forest loss in the tropics affects large areas, but whereas full forest conversions are routinely assessed, forest degradation patters remain often unclear. This is particularly so for the world's tropical dry forests, where remote sensing of forest disturbances is challenging due to high canopy complexity, strong phenology and climate variability, and diverse degradation drivers. Here, we used the full depth of the Landsat archive and devised an approach to detect disturbances related to forest degradation across the entire Argentine Dry Chaco (about 489,000 km2) over a 30-year timespan. We used annual time series of different spectral indices, summarized for three seasonal windows, and applied LandTrendr to temporally segment each time series. The resulting pixel-level forest disturbance metrics then served as input for a Random Forests classification which we used to produce an area-wide disturbance map, and associated yearly area estimates of disturbed forest. Finally, we evaluated disturbance trends in relation to climate and soil conditions. Our best model produced a disturbance map with an overall accuracy of 79%, with a balanced error distribution. A total of 8% (24,877 ± 860 km2) of the remaining forest in the Argentine Dry Chaco have been affected by forest disturbances between 1990 and 2017. Diverse spatial patterns of forest disturbances indicate a variety of agents driving disturbances. We also found the disturbed area to vary strongly between years, with larger areas being disturbed during drought years. Our approach shows that it is possible to robustly map forest disturbances in tropical dry forests using Landsat time series, and demonstrates the value of ensemble approaches to capture spectrally-complex and heterogeneous land-change processes. For the Chaco, a global deforestation hotspot, our analyses provide the first Landsat-based assessment of forest disturbance in remaining forests, highlighting the need to better consider such disturbances in assessments of carbon budgets and biodiversity change. Fil: De Marzo, Teresa. Université Catholique de Louvain; Bélgica. Humboldt-Universität zu Berlin; Alemania Fil: Pflugmacher, Dirk. Humboldt-Universität zu Berlin; Alemania Fil: Baumann, Matthias. Humboldt-Universität zu Berlin; Alemania Fil: Lambin, Eric F.. Université Catholique de Louvain; Bélgica. University of Stanford; Estados Unidos Fil: Gasparri, Nestor Ignacio. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; Argentina Fil: Kuemmerle, Tobias. Humboldt-Universität zu Berlin; Alemania |
| description |
Forest loss in the tropics affects large areas, but whereas full forest conversions are routinely assessed, forest degradation patters remain often unclear. This is particularly so for the world's tropical dry forests, where remote sensing of forest disturbances is challenging due to high canopy complexity, strong phenology and climate variability, and diverse degradation drivers. Here, we used the full depth of the Landsat archive and devised an approach to detect disturbances related to forest degradation across the entire Argentine Dry Chaco (about 489,000 km2) over a 30-year timespan. We used annual time series of different spectral indices, summarized for three seasonal windows, and applied LandTrendr to temporally segment each time series. The resulting pixel-level forest disturbance metrics then served as input for a Random Forests classification which we used to produce an area-wide disturbance map, and associated yearly area estimates of disturbed forest. Finally, we evaluated disturbance trends in relation to climate and soil conditions. Our best model produced a disturbance map with an overall accuracy of 79%, with a balanced error distribution. A total of 8% (24,877 ± 860 km2) of the remaining forest in the Argentine Dry Chaco have been affected by forest disturbances between 1990 and 2017. Diverse spatial patterns of forest disturbances indicate a variety of agents driving disturbances. We also found the disturbed area to vary strongly between years, with larger areas being disturbed during drought years. Our approach shows that it is possible to robustly map forest disturbances in tropical dry forests using Landsat time series, and demonstrates the value of ensemble approaches to capture spectrally-complex and heterogeneous land-change processes. For the Chaco, a global deforestation hotspot, our analyses provide the first Landsat-based assessment of forest disturbance in remaining forests, highlighting the need to better consider such disturbances in assessments of carbon budgets and biodiversity change. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/184076 De Marzo, Teresa; Pflugmacher, Dirk; Baumann, Matthias; Lambin, Eric F.; Gasparri, Nestor Ignacio; et al.; Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series; Elsevier Science; Itc Journal; 98; 102310; 6-2021; 1-13 0303-2434 1872-826X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/184076 |
| identifier_str_mv |
De Marzo, Teresa; Pflugmacher, Dirk; Baumann, Matthias; Lambin, Eric F.; Gasparri, Nestor Ignacio; et al.; Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series; Elsevier Science; Itc Journal; 98; 102310; 6-2021; 1-13 0303-2434 1872-826X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0303243421000179 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jag.2021.102310 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782443931041792 |
| score |
12.982451 |