Spatio-temporal correlations in models of collective motion ruled by different dynamical laws

Autores
Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas Sebastian; Melillo, Stefania; Viale, Massimiliano
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.
Fil: Cavagna, Andrea. Consiglio Nazionale delle Ricerche; Italia
Fil: Conti, Daniele. Università degli studi di Roma "La Sapienza"; Italia
Fil: Giardina, Irene. Università degli studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia
Fil: Grigera, Tomas Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Melillo, Stefania. Università degli studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia
Fil: Viale, Massimiliano. Consiglio Nazionale delle Ricerche; Italia. Università degli studi di Roma "La Sapienza"; Italia
Materia
Biological Physics
Collective Behavior
Information Transfer
Spatio-Temporal Correlations
Statistical Mechanics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/47976

id CONICETDig_2931d75f36219c6a1ba8221dc286a888
oai_identifier_str oai:ri.conicet.gov.ar:11336/47976
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Spatio-temporal correlations in models of collective motion ruled by different dynamical lawsCavagna, AndreaConti, DanieleGiardina, IreneGrigera, Tomas SebastianMelillo, StefaniaViale, MassimilianoBiological PhysicsCollective BehaviorInformation TransferSpatio-Temporal CorrelationsStatistical Mechanicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.Fil: Cavagna, Andrea. Consiglio Nazionale delle Ricerche; ItaliaFil: Conti, Daniele. Università degli studi di Roma "La Sapienza"; ItaliaFil: Giardina, Irene. Università degli studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Grigera, Tomas Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Melillo, Stefania. Università degli studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Viale, Massimiliano. Consiglio Nazionale delle Ricerche; Italia. Università degli studi di Roma "La Sapienza"; ItaliaIOP Publishing2016-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47976Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas Sebastian; Melillo, Stefania; et al.; Spatio-temporal correlations in models of collective motion ruled by different dynamical laws; IOP Publishing; Physical Biology; 13; 6; 11-2016; 1-21; 0650011478-3967CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1478-3975/13/6/065001info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1478-3975/13/6/065001/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:21Zoai:ri.conicet.gov.ar:11336/47976instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:21.785CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Spatio-temporal correlations in models of collective motion ruled by different dynamical laws
title Spatio-temporal correlations in models of collective motion ruled by different dynamical laws
spellingShingle Spatio-temporal correlations in models of collective motion ruled by different dynamical laws
Cavagna, Andrea
Biological Physics
Collective Behavior
Information Transfer
Spatio-Temporal Correlations
Statistical Mechanics
title_short Spatio-temporal correlations in models of collective motion ruled by different dynamical laws
title_full Spatio-temporal correlations in models of collective motion ruled by different dynamical laws
title_fullStr Spatio-temporal correlations in models of collective motion ruled by different dynamical laws
title_full_unstemmed Spatio-temporal correlations in models of collective motion ruled by different dynamical laws
title_sort Spatio-temporal correlations in models of collective motion ruled by different dynamical laws
dc.creator.none.fl_str_mv Cavagna, Andrea
Conti, Daniele
Giardina, Irene
Grigera, Tomas Sebastian
Melillo, Stefania
Viale, Massimiliano
author Cavagna, Andrea
author_facet Cavagna, Andrea
Conti, Daniele
Giardina, Irene
Grigera, Tomas Sebastian
Melillo, Stefania
Viale, Massimiliano
author_role author
author2 Conti, Daniele
Giardina, Irene
Grigera, Tomas Sebastian
Melillo, Stefania
Viale, Massimiliano
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Biological Physics
Collective Behavior
Information Transfer
Spatio-Temporal Correlations
Statistical Mechanics
topic Biological Physics
Collective Behavior
Information Transfer
Spatio-Temporal Correlations
Statistical Mechanics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.
Fil: Cavagna, Andrea. Consiglio Nazionale delle Ricerche; Italia
Fil: Conti, Daniele. Università degli studi di Roma "La Sapienza"; Italia
Fil: Giardina, Irene. Università degli studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia
Fil: Grigera, Tomas Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Melillo, Stefania. Università degli studi di Roma "La Sapienza"; Italia. Consiglio Nazionale delle Ricerche; Italia
Fil: Viale, Massimiliano. Consiglio Nazionale delle Ricerche; Italia. Università degli studi di Roma "La Sapienza"; Italia
description Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.
publishDate 2016
dc.date.none.fl_str_mv 2016-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/47976
Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas Sebastian; Melillo, Stefania; et al.; Spatio-temporal correlations in models of collective motion ruled by different dynamical laws; IOP Publishing; Physical Biology; 13; 6; 11-2016; 1-21; 065001
1478-3967
CONICET Digital
CONICET
url http://hdl.handle.net/11336/47976
identifier_str_mv Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas Sebastian; Melillo, Stefania; et al.; Spatio-temporal correlations in models of collective motion ruled by different dynamical laws; IOP Publishing; Physical Biology; 13; 6; 11-2016; 1-21; 065001
1478-3967
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/1478-3975/13/6/065001
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1478-3975/13/6/065001/meta
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613365443330048
score 13.070432