Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds
- Autores
- Abraham, Leandro; Bromberg, Facundo; Forradellas, Raymundo Quilez
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Muscle activation level is currently being captured using impractical and expensive devices which make their use in telemedicine settings extremely difficult. To address this issue, a prototype is presented of a non-invasive, easy-to-install system for the estimation of a discrete level of muscle activation of the biceps muscle from 3D point clouds captured with RGB-D cameras. Methods: A methodology is proposed that uses the ensemble of shape functions point cloud descriptor for the geometric characterization of 3D point clouds, together with support vector machines to learn a classifier that, based on this geometric characterization for some points of view of the biceps, provides a model for the estimation of muscle activation for all neighboring points of view. This results in a classifier that is robust to small perturbations in the point of view of the capturing device, greatly simplifying the installation process for end-users. Results: In the discrimination of five levels of effort with values up to the maximum voluntary contraction (MVC) of the biceps muscle (3800 g), the best variant of the proposed methodology achieved mean absolute errors of about 9.21% MVC — an acceptable performance for telemedicine settings where the electric measurement of muscle activation is impractical. Conclusions: The results prove that the correlations between the external geometry of the arm and biceps muscle activation are strong enough to consider computer vision and supervised learning an alternative with great potential for practical applications in tele-physiotherapy.
Fil: Abraham, Leandro. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio DHARMA; Argentina. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Bromberg, Facundo. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio DHARMA; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Forradellas, Raymundo Quilez. Universidad Nacional de Cuyo; Argentina - Materia
-
3D POINT CLOUDS
BICEPS ACTIVATION ESTIMATION
BIOMECHANICS
ENSEMBLE OF SHAPE FUNCTIONS
SUPPORT VECTOR MACHINES
TELE-PHYSIOTHERAPY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88221
Ver los metadatos del registro completo
id |
CONICETDig_292c84890919e1e78f6b41ca233ca84a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88221 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point cloudsAbraham, LeandroBromberg, FacundoForradellas, Raymundo Quilez3D POINT CLOUDSBICEPS ACTIVATION ESTIMATIONBIOMECHANICSENSEMBLE OF SHAPE FUNCTIONSSUPPORT VECTOR MACHINESTELE-PHYSIOTHERAPYhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Background: Muscle activation level is currently being captured using impractical and expensive devices which make their use in telemedicine settings extremely difficult. To address this issue, a prototype is presented of a non-invasive, easy-to-install system for the estimation of a discrete level of muscle activation of the biceps muscle from 3D point clouds captured with RGB-D cameras. Methods: A methodology is proposed that uses the ensemble of shape functions point cloud descriptor for the geometric characterization of 3D point clouds, together with support vector machines to learn a classifier that, based on this geometric characterization for some points of view of the biceps, provides a model for the estimation of muscle activation for all neighboring points of view. This results in a classifier that is robust to small perturbations in the point of view of the capturing device, greatly simplifying the installation process for end-users. Results: In the discrimination of five levels of effort with values up to the maximum voluntary contraction (MVC) of the biceps muscle (3800 g), the best variant of the proposed methodology achieved mean absolute errors of about 9.21% MVC — an acceptable performance for telemedicine settings where the electric measurement of muscle activation is impractical. Conclusions: The results prove that the correlations between the external geometry of the arm and biceps muscle activation are strong enough to consider computer vision and supervised learning an alternative with great potential for practical applications in tele-physiotherapy.Fil: Abraham, Leandro. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio DHARMA; Argentina. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Bromberg, Facundo. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio DHARMA; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Forradellas, Raymundo Quilez. Universidad Nacional de Cuyo; ArgentinaPergamon-Elsevier Science Ltd2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88221Abraham, Leandro; Bromberg, Facundo; Forradellas, Raymundo Quilez; Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 95; 4-2018; 129-1390010-4825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compbiomed.2018.02.011info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0010482518300416info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:50Zoai:ri.conicet.gov.ar:11336/88221instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:50.84CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds |
title |
Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds |
spellingShingle |
Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds Abraham, Leandro 3D POINT CLOUDS BICEPS ACTIVATION ESTIMATION BIOMECHANICS ENSEMBLE OF SHAPE FUNCTIONS SUPPORT VECTOR MACHINES TELE-PHYSIOTHERAPY |
title_short |
Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds |
title_full |
Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds |
title_fullStr |
Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds |
title_full_unstemmed |
Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds |
title_sort |
Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds |
dc.creator.none.fl_str_mv |
Abraham, Leandro Bromberg, Facundo Forradellas, Raymundo Quilez |
author |
Abraham, Leandro |
author_facet |
Abraham, Leandro Bromberg, Facundo Forradellas, Raymundo Quilez |
author_role |
author |
author2 |
Bromberg, Facundo Forradellas, Raymundo Quilez |
author2_role |
author author |
dc.subject.none.fl_str_mv |
3D POINT CLOUDS BICEPS ACTIVATION ESTIMATION BIOMECHANICS ENSEMBLE OF SHAPE FUNCTIONS SUPPORT VECTOR MACHINES TELE-PHYSIOTHERAPY |
topic |
3D POINT CLOUDS BICEPS ACTIVATION ESTIMATION BIOMECHANICS ENSEMBLE OF SHAPE FUNCTIONS SUPPORT VECTOR MACHINES TELE-PHYSIOTHERAPY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Background: Muscle activation level is currently being captured using impractical and expensive devices which make their use in telemedicine settings extremely difficult. To address this issue, a prototype is presented of a non-invasive, easy-to-install system for the estimation of a discrete level of muscle activation of the biceps muscle from 3D point clouds captured with RGB-D cameras. Methods: A methodology is proposed that uses the ensemble of shape functions point cloud descriptor for the geometric characterization of 3D point clouds, together with support vector machines to learn a classifier that, based on this geometric characterization for some points of view of the biceps, provides a model for the estimation of muscle activation for all neighboring points of view. This results in a classifier that is robust to small perturbations in the point of view of the capturing device, greatly simplifying the installation process for end-users. Results: In the discrimination of five levels of effort with values up to the maximum voluntary contraction (MVC) of the biceps muscle (3800 g), the best variant of the proposed methodology achieved mean absolute errors of about 9.21% MVC — an acceptable performance for telemedicine settings where the electric measurement of muscle activation is impractical. Conclusions: The results prove that the correlations between the external geometry of the arm and biceps muscle activation are strong enough to consider computer vision and supervised learning an alternative with great potential for practical applications in tele-physiotherapy. Fil: Abraham, Leandro. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio DHARMA; Argentina. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Bromberg, Facundo. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio DHARMA; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Forradellas, Raymundo Quilez. Universidad Nacional de Cuyo; Argentina |
description |
Background: Muscle activation level is currently being captured using impractical and expensive devices which make their use in telemedicine settings extremely difficult. To address this issue, a prototype is presented of a non-invasive, easy-to-install system for the estimation of a discrete level of muscle activation of the biceps muscle from 3D point clouds captured with RGB-D cameras. Methods: A methodology is proposed that uses the ensemble of shape functions point cloud descriptor for the geometric characterization of 3D point clouds, together with support vector machines to learn a classifier that, based on this geometric characterization for some points of view of the biceps, provides a model for the estimation of muscle activation for all neighboring points of view. This results in a classifier that is robust to small perturbations in the point of view of the capturing device, greatly simplifying the installation process for end-users. Results: In the discrimination of five levels of effort with values up to the maximum voluntary contraction (MVC) of the biceps muscle (3800 g), the best variant of the proposed methodology achieved mean absolute errors of about 9.21% MVC — an acceptable performance for telemedicine settings where the electric measurement of muscle activation is impractical. Conclusions: The results prove that the correlations between the external geometry of the arm and biceps muscle activation are strong enough to consider computer vision and supervised learning an alternative with great potential for practical applications in tele-physiotherapy. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88221 Abraham, Leandro; Bromberg, Facundo; Forradellas, Raymundo Quilez; Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 95; 4-2018; 129-139 0010-4825 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88221 |
identifier_str_mv |
Abraham, Leandro; Bromberg, Facundo; Forradellas, Raymundo Quilez; Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 95; 4-2018; 129-139 0010-4825 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compbiomed.2018.02.011 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0010482518300416 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613489740480512 |
score |
13.070432 |