Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies

Autores
Moretti, Gianni Quimey; Cortés, Emiliano; Maier, Stefan A.; Bragas, Andrea Veronica; Grinblat, Gustavo Sergio
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Optical resonances arising from quasi-bound states in the continuum (QBICs) have been recently identified in nanostructured dielectrics, showing ultrahigh quality factors accompanied by very large electromagnetic field enhancements. In this work, we design a periodic array of gallium phosphide (GaP) elliptical cylinders supporting, concurrently, three spectrally separated QBIC resonances with in-plane magnetic dipole, out-of-plane magnetic dipole, and electric quadrupole characters. We numerically explore this system for second-harmonic generation and degenerate four-wave mixing, demonstrating giant per unit cell conversion efficiencies of up to ∼2 W-1 and ∼60 W-2, respectively, when considering realistic introduced asymmetries in the metasurface, compatible with current fabrication limitations. We find that this configuration outperforms by up to more than four orders of magnitude the response of low-Q Mie or anapole resonances in individual GaP nanoantennas with engineered nonlinear mode-matching conditions. Benefiting from the straight-oriented electric field of one of the examined high-Q resonances, we further propose a novel nanocavity design for enhanced spectroscopies by slotting the meta-atoms of the periodic array. We discover that the optical cavity sustains high-intensity fields homogeneously distributed inside the slot, delivering its best performance when the elliptical cylinders are cut from end to end forming a gap, which represents a convenient model for experimental investigations. When placing an electric point dipole inside the added aperture, we find that the metasurface offers ultrahigh radiative enhancements, exceeding the previously reported slotted dielectric nanodisk at the anapole excitation by more than two orders of magnitude.
Fil: Moretti, Gianni Quimey. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Cortés, Emiliano. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania. Imperial College London; Reino Unido
Fil: Bragas, Andrea Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Grinblat, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
BOUND STATES IN THE CONTINUUM
DEGENERATE FOUR-WAVE MIXING
DIELECTRIC NANOPHOTONICS
RADIATIVE ENHANCEMENT
SECOND-HARMONIC GENERATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/182071

id CONICETDig_284f85489589f8ff8785e1717a86f4d9
oai_identifier_str oai:ri.conicet.gov.ar:11336/182071
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopiesMoretti, Gianni QuimeyCortés, EmilianoMaier, Stefan A.Bragas, Andrea VeronicaGrinblat, Gustavo SergioBOUND STATES IN THE CONTINUUMDEGENERATE FOUR-WAVE MIXINGDIELECTRIC NANOPHOTONICSRADIATIVE ENHANCEMENTSECOND-HARMONIC GENERATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Optical resonances arising from quasi-bound states in the continuum (QBICs) have been recently identified in nanostructured dielectrics, showing ultrahigh quality factors accompanied by very large electromagnetic field enhancements. In this work, we design a periodic array of gallium phosphide (GaP) elliptical cylinders supporting, concurrently, three spectrally separated QBIC resonances with in-plane magnetic dipole, out-of-plane magnetic dipole, and electric quadrupole characters. We numerically explore this system for second-harmonic generation and degenerate four-wave mixing, demonstrating giant per unit cell conversion efficiencies of up to ∼2 W-1 and ∼60 W-2, respectively, when considering realistic introduced asymmetries in the metasurface, compatible with current fabrication limitations. We find that this configuration outperforms by up to more than four orders of magnitude the response of low-Q Mie or anapole resonances in individual GaP nanoantennas with engineered nonlinear mode-matching conditions. Benefiting from the straight-oriented electric field of one of the examined high-Q resonances, we further propose a novel nanocavity design for enhanced spectroscopies by slotting the meta-atoms of the periodic array. We discover that the optical cavity sustains high-intensity fields homogeneously distributed inside the slot, delivering its best performance when the elliptical cylinders are cut from end to end forming a gap, which represents a convenient model for experimental investigations. When placing an electric point dipole inside the added aperture, we find that the metasurface offers ultrahigh radiative enhancements, exceeding the previously reported slotted dielectric nanodisk at the anapole excitation by more than two orders of magnitude.Fil: Moretti, Gianni Quimey. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Cortés, Emiliano. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania. Imperial College London; Reino UnidoFil: Bragas, Andrea Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Grinblat, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaDe Gruyter2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182071Moretti, Gianni Quimey; Cortés, Emiliano; Maier, Stefan A.; Bragas, Andrea Veronica; Grinblat, Gustavo Sergio; Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies; De Gruyter; Nanophotonics; 10; 17; 12-2021; 4261-42712192-8614CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/nanoph-2021-0388/htmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/nanoph-2021-0388info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:41Zoai:ri.conicet.gov.ar:11336/182071instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:41.32CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies
title Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies
spellingShingle Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies
Moretti, Gianni Quimey
BOUND STATES IN THE CONTINUUM
DEGENERATE FOUR-WAVE MIXING
DIELECTRIC NANOPHOTONICS
RADIATIVE ENHANCEMENT
SECOND-HARMONIC GENERATION
title_short Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies
title_full Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies
title_fullStr Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies
title_full_unstemmed Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies
title_sort Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies
dc.creator.none.fl_str_mv Moretti, Gianni Quimey
Cortés, Emiliano
Maier, Stefan A.
Bragas, Andrea Veronica
Grinblat, Gustavo Sergio
author Moretti, Gianni Quimey
author_facet Moretti, Gianni Quimey
Cortés, Emiliano
Maier, Stefan A.
Bragas, Andrea Veronica
Grinblat, Gustavo Sergio
author_role author
author2 Cortés, Emiliano
Maier, Stefan A.
Bragas, Andrea Veronica
Grinblat, Gustavo Sergio
author2_role author
author
author
author
dc.subject.none.fl_str_mv BOUND STATES IN THE CONTINUUM
DEGENERATE FOUR-WAVE MIXING
DIELECTRIC NANOPHOTONICS
RADIATIVE ENHANCEMENT
SECOND-HARMONIC GENERATION
topic BOUND STATES IN THE CONTINUUM
DEGENERATE FOUR-WAVE MIXING
DIELECTRIC NANOPHOTONICS
RADIATIVE ENHANCEMENT
SECOND-HARMONIC GENERATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Optical resonances arising from quasi-bound states in the continuum (QBICs) have been recently identified in nanostructured dielectrics, showing ultrahigh quality factors accompanied by very large electromagnetic field enhancements. In this work, we design a periodic array of gallium phosphide (GaP) elliptical cylinders supporting, concurrently, three spectrally separated QBIC resonances with in-plane magnetic dipole, out-of-plane magnetic dipole, and electric quadrupole characters. We numerically explore this system for second-harmonic generation and degenerate four-wave mixing, demonstrating giant per unit cell conversion efficiencies of up to ∼2 W-1 and ∼60 W-2, respectively, when considering realistic introduced asymmetries in the metasurface, compatible with current fabrication limitations. We find that this configuration outperforms by up to more than four orders of magnitude the response of low-Q Mie or anapole resonances in individual GaP nanoantennas with engineered nonlinear mode-matching conditions. Benefiting from the straight-oriented electric field of one of the examined high-Q resonances, we further propose a novel nanocavity design for enhanced spectroscopies by slotting the meta-atoms of the periodic array. We discover that the optical cavity sustains high-intensity fields homogeneously distributed inside the slot, delivering its best performance when the elliptical cylinders are cut from end to end forming a gap, which represents a convenient model for experimental investigations. When placing an electric point dipole inside the added aperture, we find that the metasurface offers ultrahigh radiative enhancements, exceeding the previously reported slotted dielectric nanodisk at the anapole excitation by more than two orders of magnitude.
Fil: Moretti, Gianni Quimey. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Cortés, Emiliano. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania. Imperial College London; Reino Unido
Fil: Bragas, Andrea Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Grinblat, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description Optical resonances arising from quasi-bound states in the continuum (QBICs) have been recently identified in nanostructured dielectrics, showing ultrahigh quality factors accompanied by very large electromagnetic field enhancements. In this work, we design a periodic array of gallium phosphide (GaP) elliptical cylinders supporting, concurrently, three spectrally separated QBIC resonances with in-plane magnetic dipole, out-of-plane magnetic dipole, and electric quadrupole characters. We numerically explore this system for second-harmonic generation and degenerate four-wave mixing, demonstrating giant per unit cell conversion efficiencies of up to ∼2 W-1 and ∼60 W-2, respectively, when considering realistic introduced asymmetries in the metasurface, compatible with current fabrication limitations. We find that this configuration outperforms by up to more than four orders of magnitude the response of low-Q Mie or anapole resonances in individual GaP nanoantennas with engineered nonlinear mode-matching conditions. Benefiting from the straight-oriented electric field of one of the examined high-Q resonances, we further propose a novel nanocavity design for enhanced spectroscopies by slotting the meta-atoms of the periodic array. We discover that the optical cavity sustains high-intensity fields homogeneously distributed inside the slot, delivering its best performance when the elliptical cylinders are cut from end to end forming a gap, which represents a convenient model for experimental investigations. When placing an electric point dipole inside the added aperture, we find that the metasurface offers ultrahigh radiative enhancements, exceeding the previously reported slotted dielectric nanodisk at the anapole excitation by more than two orders of magnitude.
publishDate 2021
dc.date.none.fl_str_mv 2021-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/182071
Moretti, Gianni Quimey; Cortés, Emiliano; Maier, Stefan A.; Bragas, Andrea Veronica; Grinblat, Gustavo Sergio; Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies; De Gruyter; Nanophotonics; 10; 17; 12-2021; 4261-4271
2192-8614
CONICET Digital
CONICET
url http://hdl.handle.net/11336/182071
identifier_str_mv Moretti, Gianni Quimey; Cortés, Emiliano; Maier, Stefan A.; Bragas, Andrea Veronica; Grinblat, Gustavo Sergio; Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies; De Gruyter; Nanophotonics; 10; 17; 12-2021; 4261-4271
2192-8614
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/nanoph-2021-0388/html
info:eu-repo/semantics/altIdentifier/doi/10.1515/nanoph-2021-0388
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613406050484224
score 13.070432