Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies
- Autores
- Moretti, Gianni Quimey; Cortés, Emiliano; Maier, Stefan A.; Bragas, Andrea Veronica; Grinblat, Gustavo Sergio
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Optical resonances arising from quasi-bound states in the continuum (QBICs) have been recently identified in nanostructured dielectrics, showing ultrahigh quality factors accompanied by very large electromagnetic field enhancements. In this work, we design a periodic array of gallium phosphide (GaP) elliptical cylinders supporting, concurrently, three spectrally separated QBIC resonances with in-plane magnetic dipole, out-of-plane magnetic dipole, and electric quadrupole characters. We numerically explore this system for second-harmonic generation and degenerate four-wave mixing, demonstrating giant per unit cell conversion efficiencies of up to ∼2 W-1 and ∼60 W-2, respectively, when considering realistic introduced asymmetries in the metasurface, compatible with current fabrication limitations. We find that this configuration outperforms by up to more than four orders of magnitude the response of low-Q Mie or anapole resonances in individual GaP nanoantennas with engineered nonlinear mode-matching conditions. Benefiting from the straight-oriented electric field of one of the examined high-Q resonances, we further propose a novel nanocavity design for enhanced spectroscopies by slotting the meta-atoms of the periodic array. We discover that the optical cavity sustains high-intensity fields homogeneously distributed inside the slot, delivering its best performance when the elliptical cylinders are cut from end to end forming a gap, which represents a convenient model for experimental investigations. When placing an electric point dipole inside the added aperture, we find that the metasurface offers ultrahigh radiative enhancements, exceeding the previously reported slotted dielectric nanodisk at the anapole excitation by more than two orders of magnitude.
Fil: Moretti, Gianni Quimey. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Cortés, Emiliano. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania. Imperial College London; Reino Unido
Fil: Bragas, Andrea Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Grinblat, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
BOUND STATES IN THE CONTINUUM
DEGENERATE FOUR-WAVE MIXING
DIELECTRIC NANOPHOTONICS
RADIATIVE ENHANCEMENT
SECOND-HARMONIC GENERATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/182071
Ver los metadatos del registro completo
id |
CONICETDig_284f85489589f8ff8785e1717a86f4d9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/182071 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopiesMoretti, Gianni QuimeyCortés, EmilianoMaier, Stefan A.Bragas, Andrea VeronicaGrinblat, Gustavo SergioBOUND STATES IN THE CONTINUUMDEGENERATE FOUR-WAVE MIXINGDIELECTRIC NANOPHOTONICSRADIATIVE ENHANCEMENTSECOND-HARMONIC GENERATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Optical resonances arising from quasi-bound states in the continuum (QBICs) have been recently identified in nanostructured dielectrics, showing ultrahigh quality factors accompanied by very large electromagnetic field enhancements. In this work, we design a periodic array of gallium phosphide (GaP) elliptical cylinders supporting, concurrently, three spectrally separated QBIC resonances with in-plane magnetic dipole, out-of-plane magnetic dipole, and electric quadrupole characters. We numerically explore this system for second-harmonic generation and degenerate four-wave mixing, demonstrating giant per unit cell conversion efficiencies of up to ∼2 W-1 and ∼60 W-2, respectively, when considering realistic introduced asymmetries in the metasurface, compatible with current fabrication limitations. We find that this configuration outperforms by up to more than four orders of magnitude the response of low-Q Mie or anapole resonances in individual GaP nanoantennas with engineered nonlinear mode-matching conditions. Benefiting from the straight-oriented electric field of one of the examined high-Q resonances, we further propose a novel nanocavity design for enhanced spectroscopies by slotting the meta-atoms of the periodic array. We discover that the optical cavity sustains high-intensity fields homogeneously distributed inside the slot, delivering its best performance when the elliptical cylinders are cut from end to end forming a gap, which represents a convenient model for experimental investigations. When placing an electric point dipole inside the added aperture, we find that the metasurface offers ultrahigh radiative enhancements, exceeding the previously reported slotted dielectric nanodisk at the anapole excitation by more than two orders of magnitude.Fil: Moretti, Gianni Quimey. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Cortés, Emiliano. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania. Imperial College London; Reino UnidoFil: Bragas, Andrea Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Grinblat, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaDe Gruyter2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182071Moretti, Gianni Quimey; Cortés, Emiliano; Maier, Stefan A.; Bragas, Andrea Veronica; Grinblat, Gustavo Sergio; Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies; De Gruyter; Nanophotonics; 10; 17; 12-2021; 4261-42712192-8614CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/nanoph-2021-0388/htmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/nanoph-2021-0388info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:41Zoai:ri.conicet.gov.ar:11336/182071instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:41.32CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies |
title |
Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies |
spellingShingle |
Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies Moretti, Gianni Quimey BOUND STATES IN THE CONTINUUM DEGENERATE FOUR-WAVE MIXING DIELECTRIC NANOPHOTONICS RADIATIVE ENHANCEMENT SECOND-HARMONIC GENERATION |
title_short |
Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies |
title_full |
Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies |
title_fullStr |
Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies |
title_full_unstemmed |
Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies |
title_sort |
Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies |
dc.creator.none.fl_str_mv |
Moretti, Gianni Quimey Cortés, Emiliano Maier, Stefan A. Bragas, Andrea Veronica Grinblat, Gustavo Sergio |
author |
Moretti, Gianni Quimey |
author_facet |
Moretti, Gianni Quimey Cortés, Emiliano Maier, Stefan A. Bragas, Andrea Veronica Grinblat, Gustavo Sergio |
author_role |
author |
author2 |
Cortés, Emiliano Maier, Stefan A. Bragas, Andrea Veronica Grinblat, Gustavo Sergio |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
BOUND STATES IN THE CONTINUUM DEGENERATE FOUR-WAVE MIXING DIELECTRIC NANOPHOTONICS RADIATIVE ENHANCEMENT SECOND-HARMONIC GENERATION |
topic |
BOUND STATES IN THE CONTINUUM DEGENERATE FOUR-WAVE MIXING DIELECTRIC NANOPHOTONICS RADIATIVE ENHANCEMENT SECOND-HARMONIC GENERATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Optical resonances arising from quasi-bound states in the continuum (QBICs) have been recently identified in nanostructured dielectrics, showing ultrahigh quality factors accompanied by very large electromagnetic field enhancements. In this work, we design a periodic array of gallium phosphide (GaP) elliptical cylinders supporting, concurrently, three spectrally separated QBIC resonances with in-plane magnetic dipole, out-of-plane magnetic dipole, and electric quadrupole characters. We numerically explore this system for second-harmonic generation and degenerate four-wave mixing, demonstrating giant per unit cell conversion efficiencies of up to ∼2 W-1 and ∼60 W-2, respectively, when considering realistic introduced asymmetries in the metasurface, compatible with current fabrication limitations. We find that this configuration outperforms by up to more than four orders of magnitude the response of low-Q Mie or anapole resonances in individual GaP nanoantennas with engineered nonlinear mode-matching conditions. Benefiting from the straight-oriented electric field of one of the examined high-Q resonances, we further propose a novel nanocavity design for enhanced spectroscopies by slotting the meta-atoms of the periodic array. We discover that the optical cavity sustains high-intensity fields homogeneously distributed inside the slot, delivering its best performance when the elliptical cylinders are cut from end to end forming a gap, which represents a convenient model for experimental investigations. When placing an electric point dipole inside the added aperture, we find that the metasurface offers ultrahigh radiative enhancements, exceeding the previously reported slotted dielectric nanodisk at the anapole excitation by more than two orders of magnitude. Fil: Moretti, Gianni Quimey. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Cortés, Emiliano. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania. Imperial College London; Reino Unido Fil: Bragas, Andrea Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Grinblat, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
Optical resonances arising from quasi-bound states in the continuum (QBICs) have been recently identified in nanostructured dielectrics, showing ultrahigh quality factors accompanied by very large electromagnetic field enhancements. In this work, we design a periodic array of gallium phosphide (GaP) elliptical cylinders supporting, concurrently, three spectrally separated QBIC resonances with in-plane magnetic dipole, out-of-plane magnetic dipole, and electric quadrupole characters. We numerically explore this system for second-harmonic generation and degenerate four-wave mixing, demonstrating giant per unit cell conversion efficiencies of up to ∼2 W-1 and ∼60 W-2, respectively, when considering realistic introduced asymmetries in the metasurface, compatible with current fabrication limitations. We find that this configuration outperforms by up to more than four orders of magnitude the response of low-Q Mie or anapole resonances in individual GaP nanoantennas with engineered nonlinear mode-matching conditions. Benefiting from the straight-oriented electric field of one of the examined high-Q resonances, we further propose a novel nanocavity design for enhanced spectroscopies by slotting the meta-atoms of the periodic array. We discover that the optical cavity sustains high-intensity fields homogeneously distributed inside the slot, delivering its best performance when the elliptical cylinders are cut from end to end forming a gap, which represents a convenient model for experimental investigations. When placing an electric point dipole inside the added aperture, we find that the metasurface offers ultrahigh radiative enhancements, exceeding the previously reported slotted dielectric nanodisk at the anapole excitation by more than two orders of magnitude. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/182071 Moretti, Gianni Quimey; Cortés, Emiliano; Maier, Stefan A.; Bragas, Andrea Veronica; Grinblat, Gustavo Sergio; Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies; De Gruyter; Nanophotonics; 10; 17; 12-2021; 4261-4271 2192-8614 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/182071 |
identifier_str_mv |
Moretti, Gianni Quimey; Cortés, Emiliano; Maier, Stefan A.; Bragas, Andrea Veronica; Grinblat, Gustavo Sergio; Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies; De Gruyter; Nanophotonics; 10; 17; 12-2021; 4261-4271 2192-8614 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/nanoph-2021-0388/html info:eu-repo/semantics/altIdentifier/doi/10.1515/nanoph-2021-0388 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613406050484224 |
score |
13.070432 |