Algoritmo compensador neuronal discreto de dinámica en robots móviles usando filtro de Kalman extendido

Autores
Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar
Año de publicación
2013
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Este artículo presenta el diseño de un algoritmo basado en redes neuronales en tiempo discreto para su aplicación en robótica móvil. También se muestran las condiciones de estabilidad y una evaluación de los resultados. El robot móvil en el cual se aplicó el algoritmo neural posee 2 controladores en cascada, uno para la cinemática y otro para la dinámica; ambos controladores están basados en la linealización por realimentación. El controlador de la dinámica solo posee la información de la dinámica nominal (parámetros). La red neuronal de compensación se adapta para reducir las perturbaciones ocasionadas por las variaciones en la dinámica y las incertidumbres existentes en el modelo, y esas diferencias en la dinámica entre el modelo nominal y el real son aprendidas por una red neuronal RBF (funciones de base radial) usando el filtro de Kalman extendido para el ajuste de los pesos de salida de las funciones de base radial. El algoritmo de compensación neuronal es eficiente, ya que el costo computacional es menor que el necesario para aprender la totalidad de la dinámica y al mismo tiempo posee la robustez que podría aprender la totalidad de la dinámica en caso de fallo del controlador dinámico. En este trabajo se muestra un análisis de estabilidad del algoritmo neuronal adaptable, y además se comprueba que los errores de control están acotados en función del error de aproximación de la red neuronal RBF. Se muestran resultados de experimentación sobre un robot móvil que prueban la viabilidad práctica y el rendimiento para el control de los mismos.
This paper presents the design of an algorithm based on neural networks in discrete time for its application in mobile robots. In addition, the system stability is analyzed and an evaluation of the experimental results is shown. The mobile robot has two controllers, one addressed for the kinematics and the other one designed for the dynamics. Both controllers are based on the feedback linearization. The controller of the dynamics only has information of the nominal dynamics (parameters). The neural algorithm of compensation adapts its behaviour to reduce the perturbations caused by the variations in the dynamics and the model uncertainties. Thus, the differences in the dynamics between the nominal model and the real one are learned by a neural network RBF (radial basis functions) where the output weights are set using the extended Kalman filter. The neural compensation algorithm is efficient, since the consumed processing time is lower than the one required to learning the totality of the dynamics. In addition, the proposed algorithm is robust with respect to failures of the dynamic controller. In this work, a stability analysis of the adaptable neural algorithm is shown and it is demonstrated that the control errors are bounded depending on the error of approximation of the neural network RBF. Finally, the results of experiments performed by using a mobile robot are shown to test the viability in practice and the performance for the control of robots.
Fil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Robots Móviles
Redes Neuronales
Filtro de Kalman Extendido
Control No Lineal
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23934

id CONICETDig_283edcb1825f221e68fdbe54260831c9
oai_identifier_str oai:ri.conicet.gov.ar:11336/23934
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Algoritmo compensador neuronal discreto de dinámica en robots móviles usando filtro de Kalman extendidoDiscrete neural compensator algorithm of dynamic in mobile robots using extended Kalman filterRossomando, Francisco GuidoSoria, Carlos MiguelCarelli Albarracin, Ricardo OscarRobots MóvilesRedes NeuronalesFiltro de Kalman ExtendidoControl No Linealhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Este artículo presenta el diseño de un algoritmo basado en redes neuronales en tiempo discreto para su aplicación en robótica móvil. También se muestran las condiciones de estabilidad y una evaluación de los resultados. El robot móvil en el cual se aplicó el algoritmo neural posee 2 controladores en cascada, uno para la cinemática y otro para la dinámica; ambos controladores están basados en la linealización por realimentación. El controlador de la dinámica solo posee la información de la dinámica nominal (parámetros). La red neuronal de compensación se adapta para reducir las perturbaciones ocasionadas por las variaciones en la dinámica y las incertidumbres existentes en el modelo, y esas diferencias en la dinámica entre el modelo nominal y el real son aprendidas por una red neuronal RBF (funciones de base radial) usando el filtro de Kalman extendido para el ajuste de los pesos de salida de las funciones de base radial. El algoritmo de compensación neuronal es eficiente, ya que el costo computacional es menor que el necesario para aprender la totalidad de la dinámica y al mismo tiempo posee la robustez que podría aprender la totalidad de la dinámica en caso de fallo del controlador dinámico. En este trabajo se muestra un análisis de estabilidad del algoritmo neuronal adaptable, y además se comprueba que los errores de control están acotados en función del error de aproximación de la red neuronal RBF. Se muestran resultados de experimentación sobre un robot móvil que prueban la viabilidad práctica y el rendimiento para el control de los mismos.This paper presents the design of an algorithm based on neural networks in discrete time for its application in mobile robots. In addition, the system stability is analyzed and an evaluation of the experimental results is shown. The mobile robot has two controllers, one addressed for the kinematics and the other one designed for the dynamics. Both controllers are based on the feedback linearization. The controller of the dynamics only has information of the nominal dynamics (parameters). The neural algorithm of compensation adapts its behaviour to reduce the perturbations caused by the variations in the dynamics and the model uncertainties. Thus, the differences in the dynamics between the nominal model and the real one are learned by a neural network RBF (radial basis functions) where the output weights are set using the extended Kalman filter. The neural compensation algorithm is efficient, since the consumed processing time is lower than the one required to learning the totality of the dynamics. In addition, the proposed algorithm is robust with respect to failures of the dynamic controller. In this work, a stability analysis of the adaptable neural algorithm is shown and it is demonstrated that the control errors are bounded depending on the error of approximation of the neural network RBF. Finally, the results of experiments performed by using a mobile robot are shown to test the viability in practice and the performance for the control of robots.Fil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23934Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Algoritmo compensador neuronal discreto de dinámica en robots móviles usando filtro de Kalman extendido; Elsevier; Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingenierí­a; 29; 1; 3-2013; 12-200213-1315CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0213131513000047info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rimni.2011.10.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:32Zoai:ri.conicet.gov.ar:11336/23934instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:33.04CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Algoritmo compensador neuronal discreto de dinámica en robots móviles usando filtro de Kalman extendido
Discrete neural compensator algorithm of dynamic in mobile robots using extended Kalman filter
title Algoritmo compensador neuronal discreto de dinámica en robots móviles usando filtro de Kalman extendido
spellingShingle Algoritmo compensador neuronal discreto de dinámica en robots móviles usando filtro de Kalman extendido
Rossomando, Francisco Guido
Robots Móviles
Redes Neuronales
Filtro de Kalman Extendido
Control No Lineal
title_short Algoritmo compensador neuronal discreto de dinámica en robots móviles usando filtro de Kalman extendido
title_full Algoritmo compensador neuronal discreto de dinámica en robots móviles usando filtro de Kalman extendido
title_fullStr Algoritmo compensador neuronal discreto de dinámica en robots móviles usando filtro de Kalman extendido
title_full_unstemmed Algoritmo compensador neuronal discreto de dinámica en robots móviles usando filtro de Kalman extendido
title_sort Algoritmo compensador neuronal discreto de dinámica en robots móviles usando filtro de Kalman extendido
dc.creator.none.fl_str_mv Rossomando, Francisco Guido
Soria, Carlos Miguel
Carelli Albarracin, Ricardo Oscar
author Rossomando, Francisco Guido
author_facet Rossomando, Francisco Guido
Soria, Carlos Miguel
Carelli Albarracin, Ricardo Oscar
author_role author
author2 Soria, Carlos Miguel
Carelli Albarracin, Ricardo Oscar
author2_role author
author
dc.subject.none.fl_str_mv Robots Móviles
Redes Neuronales
Filtro de Kalman Extendido
Control No Lineal
topic Robots Móviles
Redes Neuronales
Filtro de Kalman Extendido
Control No Lineal
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Este artículo presenta el diseño de un algoritmo basado en redes neuronales en tiempo discreto para su aplicación en robótica móvil. También se muestran las condiciones de estabilidad y una evaluación de los resultados. El robot móvil en el cual se aplicó el algoritmo neural posee 2 controladores en cascada, uno para la cinemática y otro para la dinámica; ambos controladores están basados en la linealización por realimentación. El controlador de la dinámica solo posee la información de la dinámica nominal (parámetros). La red neuronal de compensación se adapta para reducir las perturbaciones ocasionadas por las variaciones en la dinámica y las incertidumbres existentes en el modelo, y esas diferencias en la dinámica entre el modelo nominal y el real son aprendidas por una red neuronal RBF (funciones de base radial) usando el filtro de Kalman extendido para el ajuste de los pesos de salida de las funciones de base radial. El algoritmo de compensación neuronal es eficiente, ya que el costo computacional es menor que el necesario para aprender la totalidad de la dinámica y al mismo tiempo posee la robustez que podría aprender la totalidad de la dinámica en caso de fallo del controlador dinámico. En este trabajo se muestra un análisis de estabilidad del algoritmo neuronal adaptable, y además se comprueba que los errores de control están acotados en función del error de aproximación de la red neuronal RBF. Se muestran resultados de experimentación sobre un robot móvil que prueban la viabilidad práctica y el rendimiento para el control de los mismos.
This paper presents the design of an algorithm based on neural networks in discrete time for its application in mobile robots. In addition, the system stability is analyzed and an evaluation of the experimental results is shown. The mobile robot has two controllers, one addressed for the kinematics and the other one designed for the dynamics. Both controllers are based on the feedback linearization. The controller of the dynamics only has information of the nominal dynamics (parameters). The neural algorithm of compensation adapts its behaviour to reduce the perturbations caused by the variations in the dynamics and the model uncertainties. Thus, the differences in the dynamics between the nominal model and the real one are learned by a neural network RBF (radial basis functions) where the output weights are set using the extended Kalman filter. The neural compensation algorithm is efficient, since the consumed processing time is lower than the one required to learning the totality of the dynamics. In addition, the proposed algorithm is robust with respect to failures of the dynamic controller. In this work, a stability analysis of the adaptable neural algorithm is shown and it is demonstrated that the control errors are bounded depending on the error of approximation of the neural network RBF. Finally, the results of experiments performed by using a mobile robot are shown to test the viability in practice and the performance for the control of robots.
Fil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Este artículo presenta el diseño de un algoritmo basado en redes neuronales en tiempo discreto para su aplicación en robótica móvil. También se muestran las condiciones de estabilidad y una evaluación de los resultados. El robot móvil en el cual se aplicó el algoritmo neural posee 2 controladores en cascada, uno para la cinemática y otro para la dinámica; ambos controladores están basados en la linealización por realimentación. El controlador de la dinámica solo posee la información de la dinámica nominal (parámetros). La red neuronal de compensación se adapta para reducir las perturbaciones ocasionadas por las variaciones en la dinámica y las incertidumbres existentes en el modelo, y esas diferencias en la dinámica entre el modelo nominal y el real son aprendidas por una red neuronal RBF (funciones de base radial) usando el filtro de Kalman extendido para el ajuste de los pesos de salida de las funciones de base radial. El algoritmo de compensación neuronal es eficiente, ya que el costo computacional es menor que el necesario para aprender la totalidad de la dinámica y al mismo tiempo posee la robustez que podría aprender la totalidad de la dinámica en caso de fallo del controlador dinámico. En este trabajo se muestra un análisis de estabilidad del algoritmo neuronal adaptable, y además se comprueba que los errores de control están acotados en función del error de aproximación de la red neuronal RBF. Se muestran resultados de experimentación sobre un robot móvil que prueban la viabilidad práctica y el rendimiento para el control de los mismos.
publishDate 2013
dc.date.none.fl_str_mv 2013-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23934
Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Algoritmo compensador neuronal discreto de dinámica en robots móviles usando filtro de Kalman extendido; Elsevier; Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingenierí­a; 29; 1; 3-2013; 12-20
0213-1315
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23934
identifier_str_mv Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Algoritmo compensador neuronal discreto de dinámica en robots móviles usando filtro de Kalman extendido; Elsevier; Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingenierí­a; 29; 1; 3-2013; 12-20
0213-1315
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0213131513000047
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rimni.2011.10.004
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268609267630080
score 13.13397