Community detection in networks
- Autores
- Dorso, Claudio Oscar; Medus, A. D.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The problem of community detection is relevant in many disciplines of science. A community is usually defined, in a qualitative way, as a subset of nodes of a network which are more connected among themselves than to the rest of the network. In this article, we introduce a new method for community detection in complex networks. We define new merit factors based on the weak and strong community definitions formulated by Radicchi et al. [2004] and we show that this local definition properly describes the communities observed experimentally in two typical social networks. © 2010 World Scientific Publishing Company.
Fil: Dorso, Claudio Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Medus, A. D.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina - Materia
-
Bottlenose Dolphins Network
Community Structures
Complex Networks
Zachary Karate Club Network - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60555
Ver los metadatos del registro completo
| id |
CONICETDig_2715cbca03d57c771f6e7e6a035906f1 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60555 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Community detection in networksDorso, Claudio OscarMedus, A. D.Bottlenose Dolphins NetworkCommunity StructuresComplex NetworksZachary Karate Club Networkhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The problem of community detection is relevant in many disciplines of science. A community is usually defined, in a qualitative way, as a subset of nodes of a network which are more connected among themselves than to the rest of the network. In this article, we introduce a new method for community detection in complex networks. We define new merit factors based on the weak and strong community definitions formulated by Radicchi et al. [2004] and we show that this local definition properly describes the communities observed experimentally in two typical social networks. © 2010 World Scientific Publishing Company.Fil: Dorso, Claudio Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Medus, A. D.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaWorld Scientific2010-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60555Dorso, Claudio Oscar; Medus, A. D.; Community detection in networks; World Scientific; International Journal Of Bifurcation And Chaos; 20; 2; 4-2010; 361-3670218-1274CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0218127410025818info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:53:26Zoai:ri.conicet.gov.ar:11336/60555instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:53:26.542CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Community detection in networks |
| title |
Community detection in networks |
| spellingShingle |
Community detection in networks Dorso, Claudio Oscar Bottlenose Dolphins Network Community Structures Complex Networks Zachary Karate Club Network |
| title_short |
Community detection in networks |
| title_full |
Community detection in networks |
| title_fullStr |
Community detection in networks |
| title_full_unstemmed |
Community detection in networks |
| title_sort |
Community detection in networks |
| dc.creator.none.fl_str_mv |
Dorso, Claudio Oscar Medus, A. D. |
| author |
Dorso, Claudio Oscar |
| author_facet |
Dorso, Claudio Oscar Medus, A. D. |
| author_role |
author |
| author2 |
Medus, A. D. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Bottlenose Dolphins Network Community Structures Complex Networks Zachary Karate Club Network |
| topic |
Bottlenose Dolphins Network Community Structures Complex Networks Zachary Karate Club Network |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The problem of community detection is relevant in many disciplines of science. A community is usually defined, in a qualitative way, as a subset of nodes of a network which are more connected among themselves than to the rest of the network. In this article, we introduce a new method for community detection in complex networks. We define new merit factors based on the weak and strong community definitions formulated by Radicchi et al. [2004] and we show that this local definition properly describes the communities observed experimentally in two typical social networks. © 2010 World Scientific Publishing Company. Fil: Dorso, Claudio Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Medus, A. D.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina |
| description |
The problem of community detection is relevant in many disciplines of science. A community is usually defined, in a qualitative way, as a subset of nodes of a network which are more connected among themselves than to the rest of the network. In this article, we introduce a new method for community detection in complex networks. We define new merit factors based on the weak and strong community definitions formulated by Radicchi et al. [2004] and we show that this local definition properly describes the communities observed experimentally in two typical social networks. © 2010 World Scientific Publishing Company. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60555 Dorso, Claudio Oscar; Medus, A. D.; Community detection in networks; World Scientific; International Journal Of Bifurcation And Chaos; 20; 2; 4-2010; 361-367 0218-1274 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/60555 |
| identifier_str_mv |
Dorso, Claudio Oscar; Medus, A. D.; Community detection in networks; World Scientific; International Journal Of Bifurcation And Chaos; 20; 2; 4-2010; 361-367 0218-1274 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218127410025818 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
World Scientific |
| publisher.none.fl_str_mv |
World Scientific |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782229670264832 |
| score |
12.982451 |