Community detection in networks
- Autores
- Dorso, Claudio Oscar; Medus, A. D.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The problem of community detection is relevant in many disciplines of science. A community is usually defined, in a qualitative way, as a subset of nodes of a network which are more connected among themselves than to the rest of the network. In this article, we introduce a new method for community detection in complex networks. We define new merit factors based on the weak and strong community definitions formulated by Radicchi et al. [2004] and we show that this local definition properly describes the communities observed experimentally in two typical social networks. © 2010 World Scientific Publishing Company.
Fil: Dorso, Claudio Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Medus, A. D.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina - Materia
-
Bottlenose Dolphins Network
Community Structures
Complex Networks
Zachary Karate Club Network - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60555
Ver los metadatos del registro completo
id |
CONICETDig_2715cbca03d57c771f6e7e6a035906f1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60555 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Community detection in networksDorso, Claudio OscarMedus, A. D.Bottlenose Dolphins NetworkCommunity StructuresComplex NetworksZachary Karate Club Networkhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The problem of community detection is relevant in many disciplines of science. A community is usually defined, in a qualitative way, as a subset of nodes of a network which are more connected among themselves than to the rest of the network. In this article, we introduce a new method for community detection in complex networks. We define new merit factors based on the weak and strong community definitions formulated by Radicchi et al. [2004] and we show that this local definition properly describes the communities observed experimentally in two typical social networks. © 2010 World Scientific Publishing Company.Fil: Dorso, Claudio Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Medus, A. D.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaWorld Scientific2010-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60555Dorso, Claudio Oscar; Medus, A. D.; Community detection in networks; World Scientific; International Journal Of Bifurcation And Chaos; 20; 2; 4-2010; 361-3670218-1274CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0218127410025818info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:45Zoai:ri.conicet.gov.ar:11336/60555instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:45.607CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Community detection in networks |
title |
Community detection in networks |
spellingShingle |
Community detection in networks Dorso, Claudio Oscar Bottlenose Dolphins Network Community Structures Complex Networks Zachary Karate Club Network |
title_short |
Community detection in networks |
title_full |
Community detection in networks |
title_fullStr |
Community detection in networks |
title_full_unstemmed |
Community detection in networks |
title_sort |
Community detection in networks |
dc.creator.none.fl_str_mv |
Dorso, Claudio Oscar Medus, A. D. |
author |
Dorso, Claudio Oscar |
author_facet |
Dorso, Claudio Oscar Medus, A. D. |
author_role |
author |
author2 |
Medus, A. D. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Bottlenose Dolphins Network Community Structures Complex Networks Zachary Karate Club Network |
topic |
Bottlenose Dolphins Network Community Structures Complex Networks Zachary Karate Club Network |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The problem of community detection is relevant in many disciplines of science. A community is usually defined, in a qualitative way, as a subset of nodes of a network which are more connected among themselves than to the rest of the network. In this article, we introduce a new method for community detection in complex networks. We define new merit factors based on the weak and strong community definitions formulated by Radicchi et al. [2004] and we show that this local definition properly describes the communities observed experimentally in two typical social networks. © 2010 World Scientific Publishing Company. Fil: Dorso, Claudio Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Medus, A. D.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina |
description |
The problem of community detection is relevant in many disciplines of science. A community is usually defined, in a qualitative way, as a subset of nodes of a network which are more connected among themselves than to the rest of the network. In this article, we introduce a new method for community detection in complex networks. We define new merit factors based on the weak and strong community definitions formulated by Radicchi et al. [2004] and we show that this local definition properly describes the communities observed experimentally in two typical social networks. © 2010 World Scientific Publishing Company. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60555 Dorso, Claudio Oscar; Medus, A. D.; Community detection in networks; World Scientific; International Journal Of Bifurcation And Chaos; 20; 2; 4-2010; 361-367 0218-1274 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60555 |
identifier_str_mv |
Dorso, Claudio Oscar; Medus, A. D.; Community detection in networks; World Scientific; International Journal Of Bifurcation And Chaos; 20; 2; 4-2010; 361-367 0218-1274 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218127410025818 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614190949466112 |
score |
13.070432 |