Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods

Autores
Arcisauskaite, Vaida; Melo, Juan Ignacio; Hemmingsen, Lars; Sauer, Stephan P.A.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL2 (L = Cl, Br, I, CH 3) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH3)2 within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr 2 and HgI2 when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. © 2011 American Institute of Physics.
Fil: Arcisauskaite, Vaida. University Of Copenhagen, Faculty Of Life Sciences;
Fil: Melo, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Hemmingsen, Lars. University Of Copenhagen, Faculty Of Life Sciences;
Fil: Sauer, Stephan P.A.. Universidad de Copenhagen; Dinamarca
Materia
Shielding Tensor
computational methods
Mercury compunds
NMR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/57001

id CONICETDig_27083d400c38b9aa230c6b566064052b
oai_identifier_str oai:ri.conicet.gov.ar:11336/57001
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methodsArcisauskaite, VaidaMelo, Juan IgnacioHemmingsen, LarsSauer, Stephan P.A.Shielding Tensorcomputational methodsMercury compundsNMRhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL2 (L = Cl, Br, I, CH 3) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH3)2 within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr 2 and HgI2 when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. © 2011 American Institute of Physics.Fil: Arcisauskaite, Vaida. University Of Copenhagen, Faculty Of Life Sciences;Fil: Melo, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Hemmingsen, Lars. University Of Copenhagen, Faculty Of Life Sciences;Fil: Sauer, Stephan P.A.. Universidad de Copenhagen; DinamarcaAmerican Institute of Physics2011-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57001Arcisauskaite, Vaida; Melo, Juan Ignacio; Hemmingsen, Lars; Sauer, Stephan P.A.; Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods; American Institute of Physics; Journal of Chemical Physics; 135; 4; 7-2011; 1-110021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.3608153info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:56Zoai:ri.conicet.gov.ar:11336/57001instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:56.607CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods
title Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods
spellingShingle Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods
Arcisauskaite, Vaida
Shielding Tensor
computational methods
Mercury compunds
NMR
title_short Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods
title_full Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods
title_fullStr Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods
title_full_unstemmed Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods
title_sort Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods
dc.creator.none.fl_str_mv Arcisauskaite, Vaida
Melo, Juan Ignacio
Hemmingsen, Lars
Sauer, Stephan P.A.
author Arcisauskaite, Vaida
author_facet Arcisauskaite, Vaida
Melo, Juan Ignacio
Hemmingsen, Lars
Sauer, Stephan P.A.
author_role author
author2 Melo, Juan Ignacio
Hemmingsen, Lars
Sauer, Stephan P.A.
author2_role author
author
author
dc.subject.none.fl_str_mv Shielding Tensor
computational methods
Mercury compunds
NMR
topic Shielding Tensor
computational methods
Mercury compunds
NMR
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL2 (L = Cl, Br, I, CH 3) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH3)2 within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr 2 and HgI2 when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. © 2011 American Institute of Physics.
Fil: Arcisauskaite, Vaida. University Of Copenhagen, Faculty Of Life Sciences;
Fil: Melo, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Hemmingsen, Lars. University Of Copenhagen, Faculty Of Life Sciences;
Fil: Sauer, Stephan P.A.. Universidad de Copenhagen; Dinamarca
description We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL2 (L = Cl, Br, I, CH 3) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH3)2 within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr 2 and HgI2 when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. © 2011 American Institute of Physics.
publishDate 2011
dc.date.none.fl_str_mv 2011-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/57001
Arcisauskaite, Vaida; Melo, Juan Ignacio; Hemmingsen, Lars; Sauer, Stephan P.A.; Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods; American Institute of Physics; Journal of Chemical Physics; 135; 4; 7-2011; 1-11
0021-9606
CONICET Digital
CONICET
url http://hdl.handle.net/11336/57001
identifier_str_mv Arcisauskaite, Vaida; Melo, Juan Ignacio; Hemmingsen, Lars; Sauer, Stephan P.A.; Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods; American Institute of Physics; Journal of Chemical Physics; 135; 4; 7-2011; 1-11
0021-9606
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3608153
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613517762625536
score 13.070432