Optical solitons in nematic liquid crystals: Model with saturation effects
- Autores
- Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego Fernando; Sanchez Fernandez de la Vega, Constanza Mariel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a 2D system that couples a Schrödinger evolution equation to a nonlinear elliptic equation and models the propagation of a laser beam in a nematic liquid crystal. The nonlinear elliptic equation describes the response of the director angle to the laser beam electric field. We obtain results on well-posedness and solitary wave solutions of this system, generalizing results for a well-studied simpler system with a linear elliptic equation for the director field. The analysis of the nonlinear elliptic problem shows the existence of an isolated global branch of solutions with director angles that remain bounded for arbitrary electric field. The results on the director equation are also used to show local and global existence, as well as decay for initial conditions with sufficiently small L 2-norm. For sufficiently large L 2-norm we show the existence of energy minimizing optical solitons with radial, positive and monotone profiles.
Fil: Borgna, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín; Argentina
Fil: Panayotaros, Panayotis. Universidad Nacional Autónoma de México; México
Fil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
NEMATIC LIQUID CRYSTALS
NONLINEAR SCHRODINGER EQUATIONS
OPTICAL SOLITONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/93643
Ver los metadatos del registro completo
id |
CONICETDig_26f018d3686ba651284f947ca094e66e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/93643 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optical solitons in nematic liquid crystals: Model with saturation effectsBorgna, Juan PabloPanayotaros, PanayotisRial, Diego FernandoSanchez Fernandez de la Vega, Constanza MarielNEMATIC LIQUID CRYSTALSNONLINEAR SCHRODINGER EQUATIONSOPTICAL SOLITONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study a 2D system that couples a Schrödinger evolution equation to a nonlinear elliptic equation and models the propagation of a laser beam in a nematic liquid crystal. The nonlinear elliptic equation describes the response of the director angle to the laser beam electric field. We obtain results on well-posedness and solitary wave solutions of this system, generalizing results for a well-studied simpler system with a linear elliptic equation for the director field. The analysis of the nonlinear elliptic problem shows the existence of an isolated global branch of solutions with director angles that remain bounded for arbitrary electric field. The results on the director equation are also used to show local and global existence, as well as decay for initial conditions with sufficiently small L 2-norm. For sufficiently large L 2-norm we show the existence of energy minimizing optical solitons with radial, positive and monotone profiles.Fil: Borgna, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín; ArgentinaFil: Panayotaros, Panayotis. Universidad Nacional Autónoma de México; MéxicoFil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Sanchez Fernandez de la Vega, Constanza Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaIOP Publishing2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93643Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego Fernando; Sanchez Fernandez de la Vega, Constanza Mariel; Optical solitons in nematic liquid crystals: Model with saturation effects; IOP Publishing; Nonlinearity; 31; 4; 4-2018; 1535-15590951-7715CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6544/aaa2e2info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6544/aaa2e2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:15Zoai:ri.conicet.gov.ar:11336/93643instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:15.882CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optical solitons in nematic liquid crystals: Model with saturation effects |
title |
Optical solitons in nematic liquid crystals: Model with saturation effects |
spellingShingle |
Optical solitons in nematic liquid crystals: Model with saturation effects Borgna, Juan Pablo NEMATIC LIQUID CRYSTALS NONLINEAR SCHRODINGER EQUATIONS OPTICAL SOLITONS |
title_short |
Optical solitons in nematic liquid crystals: Model with saturation effects |
title_full |
Optical solitons in nematic liquid crystals: Model with saturation effects |
title_fullStr |
Optical solitons in nematic liquid crystals: Model with saturation effects |
title_full_unstemmed |
Optical solitons in nematic liquid crystals: Model with saturation effects |
title_sort |
Optical solitons in nematic liquid crystals: Model with saturation effects |
dc.creator.none.fl_str_mv |
Borgna, Juan Pablo Panayotaros, Panayotis Rial, Diego Fernando Sanchez Fernandez de la Vega, Constanza Mariel |
author |
Borgna, Juan Pablo |
author_facet |
Borgna, Juan Pablo Panayotaros, Panayotis Rial, Diego Fernando Sanchez Fernandez de la Vega, Constanza Mariel |
author_role |
author |
author2 |
Panayotaros, Panayotis Rial, Diego Fernando Sanchez Fernandez de la Vega, Constanza Mariel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
NEMATIC LIQUID CRYSTALS NONLINEAR SCHRODINGER EQUATIONS OPTICAL SOLITONS |
topic |
NEMATIC LIQUID CRYSTALS NONLINEAR SCHRODINGER EQUATIONS OPTICAL SOLITONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study a 2D system that couples a Schrödinger evolution equation to a nonlinear elliptic equation and models the propagation of a laser beam in a nematic liquid crystal. The nonlinear elliptic equation describes the response of the director angle to the laser beam electric field. We obtain results on well-posedness and solitary wave solutions of this system, generalizing results for a well-studied simpler system with a linear elliptic equation for the director field. The analysis of the nonlinear elliptic problem shows the existence of an isolated global branch of solutions with director angles that remain bounded for arbitrary electric field. The results on the director equation are also used to show local and global existence, as well as decay for initial conditions with sufficiently small L 2-norm. For sufficiently large L 2-norm we show the existence of energy minimizing optical solitons with radial, positive and monotone profiles. Fil: Borgna, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín; Argentina Fil: Panayotaros, Panayotis. Universidad Nacional Autónoma de México; México Fil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We study a 2D system that couples a Schrödinger evolution equation to a nonlinear elliptic equation and models the propagation of a laser beam in a nematic liquid crystal. The nonlinear elliptic equation describes the response of the director angle to the laser beam electric field. We obtain results on well-posedness and solitary wave solutions of this system, generalizing results for a well-studied simpler system with a linear elliptic equation for the director field. The analysis of the nonlinear elliptic problem shows the existence of an isolated global branch of solutions with director angles that remain bounded for arbitrary electric field. The results on the director equation are also used to show local and global existence, as well as decay for initial conditions with sufficiently small L 2-norm. For sufficiently large L 2-norm we show the existence of energy minimizing optical solitons with radial, positive and monotone profiles. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/93643 Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego Fernando; Sanchez Fernandez de la Vega, Constanza Mariel; Optical solitons in nematic liquid crystals: Model with saturation effects; IOP Publishing; Nonlinearity; 31; 4; 4-2018; 1535-1559 0951-7715 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/93643 |
identifier_str_mv |
Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego Fernando; Sanchez Fernandez de la Vega, Constanza Mariel; Optical solitons in nematic liquid crystals: Model with saturation effects; IOP Publishing; Nonlinearity; 31; 4; 4-2018; 1535-1559 0951-7715 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6544/aaa2e2 info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6544/aaa2e2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269212027912192 |
score |
13.13397 |