Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level

Autores
Errico, Leonardo Antonio; Lejaeghere, Kurt; Runco, Jorge Marcelo; Mishra, S.N.; Rentería, Mario; Cottenier, Stefaan
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present ab initio calculated electric-field gradient tensors at Cd sites in a set of simple yet diverse noncubic metals. By combining these predictions with carefully selected published experimental data, the nuclear quadrupole moment of the 245 keV 5/2+ level of 111Cd is determined to be 0.76(2) b. Knowing this quadrupole moment is important for time-differential perturbed angular correlation spectroscopy: decades of experimentally obtained nuclear quadrupole coupling constants for solids can now be more reliably converted into electronic structure information. For nuclear physics systematics, this is a rare opportunity to have reliable quadrupole moment information for a short-lived level that is not accessible to regular experimental methods. Much effort is spent on the determination of a meaningful error bar, which is an aspect that gained only recently more attention in the context of density functional theory predictions. This required assessing the numerical uncertainty in density functional theory predictions for electric-field gradient tensors in solids. In contrast to quantum chemistry methods, these density functional theory predictions cannot detect systematic errors. By comparing our quadrupole moment value with an independent value obtained from quantum chemistry calculations and experiment, we show that systematic errors are small for the systems studied here. Yet, there are indications that density functional theory underestimates by a few percent the electric-field gradient, and therefore overestimates the quadrupole moment by the same amount. We point out which future work needs to be done to characterize the possible deviations inherent to density functional theory.
Fil: Errico, Leonardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Lejaeghere, Kurt. University of Ghent; Bélgica
Fil: Runco, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Mishra, S.N.. Tata Institute of Fundamental Research; India
Fil: Rentería, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Cottenier, Stefaan. University of Ghent; Bélgica
Materia
111cd
Quadrupole Moment
Ab Initio
Error Bar
Precision
Dft
Apw
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/50235

id CONICETDig_26881b9dbabbf90397bc6453bdac30b6
oai_identifier_str oai:ri.conicet.gov.ar:11336/50235
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ LevelErrico, Leonardo AntonioLejaeghere, KurtRunco, Jorge MarceloMishra, S.N.Rentería, MarioCottenier, Stefaan111cdQuadrupole MomentAb InitioError BarPrecisionDftApwhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present ab initio calculated electric-field gradient tensors at Cd sites in a set of simple yet diverse noncubic metals. By combining these predictions with carefully selected published experimental data, the nuclear quadrupole moment of the 245 keV 5/2+ level of 111Cd is determined to be 0.76(2) b. Knowing this quadrupole moment is important for time-differential perturbed angular correlation spectroscopy: decades of experimentally obtained nuclear quadrupole coupling constants for solids can now be more reliably converted into electronic structure information. For nuclear physics systematics, this is a rare opportunity to have reliable quadrupole moment information for a short-lived level that is not accessible to regular experimental methods. Much effort is spent on the determination of a meaningful error bar, which is an aspect that gained only recently more attention in the context of density functional theory predictions. This required assessing the numerical uncertainty in density functional theory predictions for electric-field gradient tensors in solids. In contrast to quantum chemistry methods, these density functional theory predictions cannot detect systematic errors. By comparing our quadrupole moment value with an independent value obtained from quantum chemistry calculations and experiment, we show that systematic errors are small for the systems studied here. Yet, there are indications that density functional theory underestimates by a few percent the electric-field gradient, and therefore overestimates the quadrupole moment by the same amount. We point out which future work needs to be done to characterize the possible deviations inherent to density functional theory.Fil: Errico, Leonardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Lejaeghere, Kurt. University of Ghent; BélgicaFil: Runco, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Mishra, S.N.. Tata Institute of Fundamental Research; IndiaFil: Rentería, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Cottenier, Stefaan. University of Ghent; BélgicaAmerican Chemical Society2016-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50235Errico, Leonardo Antonio; Lejaeghere, Kurt; Runco, Jorge Marcelo; Mishra, S.N.; Rentería, Mario; et al.; Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level; American Chemical Society; Journal of Physical Chemistry C; 120; 40; 10-2016; 23111-231201932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.6b06127info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.6b06127info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:04:55Zoai:ri.conicet.gov.ar:11336/50235instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:04:55.346CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level
title Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level
spellingShingle Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level
Errico, Leonardo Antonio
111cd
Quadrupole Moment
Ab Initio
Error Bar
Precision
Dft
Apw
title_short Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level
title_full Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level
title_fullStr Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level
title_full_unstemmed Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level
title_sort Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level
dc.creator.none.fl_str_mv Errico, Leonardo Antonio
Lejaeghere, Kurt
Runco, Jorge Marcelo
Mishra, S.N.
Rentería, Mario
Cottenier, Stefaan
author Errico, Leonardo Antonio
author_facet Errico, Leonardo Antonio
Lejaeghere, Kurt
Runco, Jorge Marcelo
Mishra, S.N.
Rentería, Mario
Cottenier, Stefaan
author_role author
author2 Lejaeghere, Kurt
Runco, Jorge Marcelo
Mishra, S.N.
Rentería, Mario
Cottenier, Stefaan
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv 111cd
Quadrupole Moment
Ab Initio
Error Bar
Precision
Dft
Apw
topic 111cd
Quadrupole Moment
Ab Initio
Error Bar
Precision
Dft
Apw
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present ab initio calculated electric-field gradient tensors at Cd sites in a set of simple yet diverse noncubic metals. By combining these predictions with carefully selected published experimental data, the nuclear quadrupole moment of the 245 keV 5/2+ level of 111Cd is determined to be 0.76(2) b. Knowing this quadrupole moment is important for time-differential perturbed angular correlation spectroscopy: decades of experimentally obtained nuclear quadrupole coupling constants for solids can now be more reliably converted into electronic structure information. For nuclear physics systematics, this is a rare opportunity to have reliable quadrupole moment information for a short-lived level that is not accessible to regular experimental methods. Much effort is spent on the determination of a meaningful error bar, which is an aspect that gained only recently more attention in the context of density functional theory predictions. This required assessing the numerical uncertainty in density functional theory predictions for electric-field gradient tensors in solids. In contrast to quantum chemistry methods, these density functional theory predictions cannot detect systematic errors. By comparing our quadrupole moment value with an independent value obtained from quantum chemistry calculations and experiment, we show that systematic errors are small for the systems studied here. Yet, there are indications that density functional theory underestimates by a few percent the electric-field gradient, and therefore overestimates the quadrupole moment by the same amount. We point out which future work needs to be done to characterize the possible deviations inherent to density functional theory.
Fil: Errico, Leonardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Lejaeghere, Kurt. University of Ghent; Bélgica
Fil: Runco, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Mishra, S.N.. Tata Institute of Fundamental Research; India
Fil: Rentería, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Cottenier, Stefaan. University of Ghent; Bélgica
description We present ab initio calculated electric-field gradient tensors at Cd sites in a set of simple yet diverse noncubic metals. By combining these predictions with carefully selected published experimental data, the nuclear quadrupole moment of the 245 keV 5/2+ level of 111Cd is determined to be 0.76(2) b. Knowing this quadrupole moment is important for time-differential perturbed angular correlation spectroscopy: decades of experimentally obtained nuclear quadrupole coupling constants for solids can now be more reliably converted into electronic structure information. For nuclear physics systematics, this is a rare opportunity to have reliable quadrupole moment information for a short-lived level that is not accessible to regular experimental methods. Much effort is spent on the determination of a meaningful error bar, which is an aspect that gained only recently more attention in the context of density functional theory predictions. This required assessing the numerical uncertainty in density functional theory predictions for electric-field gradient tensors in solids. In contrast to quantum chemistry methods, these density functional theory predictions cannot detect systematic errors. By comparing our quadrupole moment value with an independent value obtained from quantum chemistry calculations and experiment, we show that systematic errors are small for the systems studied here. Yet, there are indications that density functional theory underestimates by a few percent the electric-field gradient, and therefore overestimates the quadrupole moment by the same amount. We point out which future work needs to be done to characterize the possible deviations inherent to density functional theory.
publishDate 2016
dc.date.none.fl_str_mv 2016-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/50235
Errico, Leonardo Antonio; Lejaeghere, Kurt; Runco, Jorge Marcelo; Mishra, S.N.; Rentería, Mario; et al.; Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level; American Chemical Society; Journal of Physical Chemistry C; 120; 40; 10-2016; 23111-23120
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/50235
identifier_str_mv Errico, Leonardo Antonio; Lejaeghere, Kurt; Runco, Jorge Marcelo; Mishra, S.N.; Rentería, Mario; et al.; Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level; American Chemical Society; Journal of Physical Chemistry C; 120; 40; 10-2016; 23111-23120
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.6b06127
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.6b06127
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980167837810688
score 12.993085