Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level
- Autores
- Errico, Leonardo Antonio; Lejaeghere, Kurt; Runco, Jorge Marcelo; Mishra, S.N.; Rentería, Mario; Cottenier, Stefaan
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present ab initio calculated electric-field gradient tensors at Cd sites in a set of simple yet diverse noncubic metals. By combining these predictions with carefully selected published experimental data, the nuclear quadrupole moment of the 245 keV 5/2+ level of 111Cd is determined to be 0.76(2) b. Knowing this quadrupole moment is important for time-differential perturbed angular correlation spectroscopy: decades of experimentally obtained nuclear quadrupole coupling constants for solids can now be more reliably converted into electronic structure information. For nuclear physics systematics, this is a rare opportunity to have reliable quadrupole moment information for a short-lived level that is not accessible to regular experimental methods. Much effort is spent on the determination of a meaningful error bar, which is an aspect that gained only recently more attention in the context of density functional theory predictions. This required assessing the numerical uncertainty in density functional theory predictions for electric-field gradient tensors in solids. In contrast to quantum chemistry methods, these density functional theory predictions cannot detect systematic errors. By comparing our quadrupole moment value with an independent value obtained from quantum chemistry calculations and experiment, we show that systematic errors are small for the systems studied here. Yet, there are indications that density functional theory underestimates by a few percent the electric-field gradient, and therefore overestimates the quadrupole moment by the same amount. We point out which future work needs to be done to characterize the possible deviations inherent to density functional theory.
Fil: Errico, Leonardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Lejaeghere, Kurt. University of Ghent; Bélgica
Fil: Runco, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Mishra, S.N.. Tata Institute of Fundamental Research; India
Fil: Rentería, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Cottenier, Stefaan. University of Ghent; Bélgica - Materia
-
111cd
Quadrupole Moment
Ab Initio
Error Bar
Precision
Dft
Apw - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/50235
Ver los metadatos del registro completo
id |
CONICETDig_26881b9dbabbf90397bc6453bdac30b6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/50235 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ LevelErrico, Leonardo AntonioLejaeghere, KurtRunco, Jorge MarceloMishra, S.N.Rentería, MarioCottenier, Stefaan111cdQuadrupole MomentAb InitioError BarPrecisionDftApwhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present ab initio calculated electric-field gradient tensors at Cd sites in a set of simple yet diverse noncubic metals. By combining these predictions with carefully selected published experimental data, the nuclear quadrupole moment of the 245 keV 5/2+ level of 111Cd is determined to be 0.76(2) b. Knowing this quadrupole moment is important for time-differential perturbed angular correlation spectroscopy: decades of experimentally obtained nuclear quadrupole coupling constants for solids can now be more reliably converted into electronic structure information. For nuclear physics systematics, this is a rare opportunity to have reliable quadrupole moment information for a short-lived level that is not accessible to regular experimental methods. Much effort is spent on the determination of a meaningful error bar, which is an aspect that gained only recently more attention in the context of density functional theory predictions. This required assessing the numerical uncertainty in density functional theory predictions for electric-field gradient tensors in solids. In contrast to quantum chemistry methods, these density functional theory predictions cannot detect systematic errors. By comparing our quadrupole moment value with an independent value obtained from quantum chemistry calculations and experiment, we show that systematic errors are small for the systems studied here. Yet, there are indications that density functional theory underestimates by a few percent the electric-field gradient, and therefore overestimates the quadrupole moment by the same amount. We point out which future work needs to be done to characterize the possible deviations inherent to density functional theory.Fil: Errico, Leonardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Lejaeghere, Kurt. University of Ghent; BélgicaFil: Runco, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Mishra, S.N.. Tata Institute of Fundamental Research; IndiaFil: Rentería, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Cottenier, Stefaan. University of Ghent; BélgicaAmerican Chemical Society2016-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50235Errico, Leonardo Antonio; Lejaeghere, Kurt; Runco, Jorge Marcelo; Mishra, S.N.; Rentería, Mario; et al.; Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level; American Chemical Society; Journal of Physical Chemistry C; 120; 40; 10-2016; 23111-231201932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.6b06127info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.6b06127info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:04:55Zoai:ri.conicet.gov.ar:11336/50235instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:04:55.346CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level |
title |
Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level |
spellingShingle |
Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level Errico, Leonardo Antonio 111cd Quadrupole Moment Ab Initio Error Bar Precision Dft Apw |
title_short |
Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level |
title_full |
Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level |
title_fullStr |
Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level |
title_full_unstemmed |
Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level |
title_sort |
Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level |
dc.creator.none.fl_str_mv |
Errico, Leonardo Antonio Lejaeghere, Kurt Runco, Jorge Marcelo Mishra, S.N. Rentería, Mario Cottenier, Stefaan |
author |
Errico, Leonardo Antonio |
author_facet |
Errico, Leonardo Antonio Lejaeghere, Kurt Runco, Jorge Marcelo Mishra, S.N. Rentería, Mario Cottenier, Stefaan |
author_role |
author |
author2 |
Lejaeghere, Kurt Runco, Jorge Marcelo Mishra, S.N. Rentería, Mario Cottenier, Stefaan |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
111cd Quadrupole Moment Ab Initio Error Bar Precision Dft Apw |
topic |
111cd Quadrupole Moment Ab Initio Error Bar Precision Dft Apw |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present ab initio calculated electric-field gradient tensors at Cd sites in a set of simple yet diverse noncubic metals. By combining these predictions with carefully selected published experimental data, the nuclear quadrupole moment of the 245 keV 5/2+ level of 111Cd is determined to be 0.76(2) b. Knowing this quadrupole moment is important for time-differential perturbed angular correlation spectroscopy: decades of experimentally obtained nuclear quadrupole coupling constants for solids can now be more reliably converted into electronic structure information. For nuclear physics systematics, this is a rare opportunity to have reliable quadrupole moment information for a short-lived level that is not accessible to regular experimental methods. Much effort is spent on the determination of a meaningful error bar, which is an aspect that gained only recently more attention in the context of density functional theory predictions. This required assessing the numerical uncertainty in density functional theory predictions for electric-field gradient tensors in solids. In contrast to quantum chemistry methods, these density functional theory predictions cannot detect systematic errors. By comparing our quadrupole moment value with an independent value obtained from quantum chemistry calculations and experiment, we show that systematic errors are small for the systems studied here. Yet, there are indications that density functional theory underestimates by a few percent the electric-field gradient, and therefore overestimates the quadrupole moment by the same amount. We point out which future work needs to be done to characterize the possible deviations inherent to density functional theory. Fil: Errico, Leonardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina Fil: Lejaeghere, Kurt. University of Ghent; Bélgica Fil: Runco, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina Fil: Mishra, S.N.. Tata Institute of Fundamental Research; India Fil: Rentería, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina Fil: Cottenier, Stefaan. University of Ghent; Bélgica |
description |
We present ab initio calculated electric-field gradient tensors at Cd sites in a set of simple yet diverse noncubic metals. By combining these predictions with carefully selected published experimental data, the nuclear quadrupole moment of the 245 keV 5/2+ level of 111Cd is determined to be 0.76(2) b. Knowing this quadrupole moment is important for time-differential perturbed angular correlation spectroscopy: decades of experimentally obtained nuclear quadrupole coupling constants for solids can now be more reliably converted into electronic structure information. For nuclear physics systematics, this is a rare opportunity to have reliable quadrupole moment information for a short-lived level that is not accessible to regular experimental methods. Much effort is spent on the determination of a meaningful error bar, which is an aspect that gained only recently more attention in the context of density functional theory predictions. This required assessing the numerical uncertainty in density functional theory predictions for electric-field gradient tensors in solids. In contrast to quantum chemistry methods, these density functional theory predictions cannot detect systematic errors. By comparing our quadrupole moment value with an independent value obtained from quantum chemistry calculations and experiment, we show that systematic errors are small for the systems studied here. Yet, there are indications that density functional theory underestimates by a few percent the electric-field gradient, and therefore overestimates the quadrupole moment by the same amount. We point out which future work needs to be done to characterize the possible deviations inherent to density functional theory. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/50235 Errico, Leonardo Antonio; Lejaeghere, Kurt; Runco, Jorge Marcelo; Mishra, S.N.; Rentería, Mario; et al.; Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level; American Chemical Society; Journal of Physical Chemistry C; 120; 40; 10-2016; 23111-23120 1932-7447 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/50235 |
identifier_str_mv |
Errico, Leonardo Antonio; Lejaeghere, Kurt; Runco, Jorge Marcelo; Mishra, S.N.; Rentería, Mario; et al.; Precision of Electric-Field Gradient Predictions by Density Functional Theory and Implications for the Nuclear Quadrupole Moment and Its Error Bar of the 111Cd 245 keV 5/2+ Level; American Chemical Society; Journal of Physical Chemistry C; 120; 40; 10-2016; 23111-23120 1932-7447 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.6b06127 info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.6b06127 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980167837810688 |
score |
12.993085 |