Roughening of the anharmonic Larkin model

Autores
Purrello, Víctor Hugo; Iguain, Jose Luis; Kolton, Alejandro Benedykt
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the roughening of d-dimensional directed elastic interfaces subject to quenched random forces. As in the Larkin model, random forces are considered constant in the displacement direction and uncorrelated in the perpendicular direction. The elastic energy density contains an harmonic part, proportional to (∂xu)2, and an anharmonic part, proportional to (∂xu)2n, where u is the displacement field and n>1 an integer. By heuristic scaling arguments, we obtain the global roughness exponent ζ, the dynamic exponent z, and the harmonic to anharmonic crossover length scale, for arbitrary d and n, yielding an upper critical dimension dc(n)=4n. We find a precise agreement with numerical calculations in d=1. For the d=1 case we observe, however, an anomalous "faceted" scaling, with the spectral roughness exponent ζs satisfying ζs>ζ>1 for any finite n>1, hence invalidating the usual single-exponent scaling for two-point correlation functions, and the small gradient approximation of the elastic energy density in the thermodynamic limit. We show that such d=1 case is directly related to a family of Brownian functionals parameterized by n, ranging from the random-acceleration model for n=1 to the Lévy arcsine-law problem for n=∞. Our results may be experimentally relevant for describing the roughening of nonlinear elastic interfaces in a Matheron-de Marsilly type of random flow.
Fil: Purrello, Víctor Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Iguain, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Kolton, Alejandro Benedykt. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Critical phenomena
Elasticity
Roughness
Random & disordered media
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/122918

id CONICETDig_2659df0a7fde94af00c40f3ecbd0885d
oai_identifier_str oai:ri.conicet.gov.ar:11336/122918
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Roughening of the anharmonic Larkin modelPurrello, Víctor HugoIguain, Jose LuisKolton, Alejandro BenedyktCritical phenomenaElasticityRoughnessRandom & disordered mediahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the roughening of d-dimensional directed elastic interfaces subject to quenched random forces. As in the Larkin model, random forces are considered constant in the displacement direction and uncorrelated in the perpendicular direction. The elastic energy density contains an harmonic part, proportional to (∂xu)2, and an anharmonic part, proportional to (∂xu)2n, where u is the displacement field and n>1 an integer. By heuristic scaling arguments, we obtain the global roughness exponent ζ, the dynamic exponent z, and the harmonic to anharmonic crossover length scale, for arbitrary d and n, yielding an upper critical dimension dc(n)=4n. We find a precise agreement with numerical calculations in d=1. For the d=1 case we observe, however, an anomalous "faceted" scaling, with the spectral roughness exponent ζs satisfying ζs>ζ>1 for any finite n>1, hence invalidating the usual single-exponent scaling for two-point correlation functions, and the small gradient approximation of the elastic energy density in the thermodynamic limit. We show that such d=1 case is directly related to a family of Brownian functionals parameterized by n, ranging from the random-acceleration model for n=1 to the Lévy arcsine-law problem for n=∞. Our results may be experimentally relevant for describing the roughening of nonlinear elastic interfaces in a Matheron-de Marsilly type of random flow.Fil: Purrello, Víctor Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Iguain, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Kolton, Alejandro Benedykt. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/122918Purrello, Víctor Hugo; Iguain, Jose Luis; Kolton, Alejandro Benedykt; Roughening of the anharmonic Larkin model; American Physical Society; Physical Review E; 99; 3; 3-2019; 1-112470-00452470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.99.032105info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.99.032105info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:53Zoai:ri.conicet.gov.ar:11336/122918instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:53.696CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Roughening of the anharmonic Larkin model
title Roughening of the anharmonic Larkin model
spellingShingle Roughening of the anharmonic Larkin model
Purrello, Víctor Hugo
Critical phenomena
Elasticity
Roughness
Random & disordered media
title_short Roughening of the anharmonic Larkin model
title_full Roughening of the anharmonic Larkin model
title_fullStr Roughening of the anharmonic Larkin model
title_full_unstemmed Roughening of the anharmonic Larkin model
title_sort Roughening of the anharmonic Larkin model
dc.creator.none.fl_str_mv Purrello, Víctor Hugo
Iguain, Jose Luis
Kolton, Alejandro Benedykt
author Purrello, Víctor Hugo
author_facet Purrello, Víctor Hugo
Iguain, Jose Luis
Kolton, Alejandro Benedykt
author_role author
author2 Iguain, Jose Luis
Kolton, Alejandro Benedykt
author2_role author
author
dc.subject.none.fl_str_mv Critical phenomena
Elasticity
Roughness
Random & disordered media
topic Critical phenomena
Elasticity
Roughness
Random & disordered media
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the roughening of d-dimensional directed elastic interfaces subject to quenched random forces. As in the Larkin model, random forces are considered constant in the displacement direction and uncorrelated in the perpendicular direction. The elastic energy density contains an harmonic part, proportional to (∂xu)2, and an anharmonic part, proportional to (∂xu)2n, where u is the displacement field and n>1 an integer. By heuristic scaling arguments, we obtain the global roughness exponent ζ, the dynamic exponent z, and the harmonic to anharmonic crossover length scale, for arbitrary d and n, yielding an upper critical dimension dc(n)=4n. We find a precise agreement with numerical calculations in d=1. For the d=1 case we observe, however, an anomalous "faceted" scaling, with the spectral roughness exponent ζs satisfying ζs>ζ>1 for any finite n>1, hence invalidating the usual single-exponent scaling for two-point correlation functions, and the small gradient approximation of the elastic energy density in the thermodynamic limit. We show that such d=1 case is directly related to a family of Brownian functionals parameterized by n, ranging from the random-acceleration model for n=1 to the Lévy arcsine-law problem for n=∞. Our results may be experimentally relevant for describing the roughening of nonlinear elastic interfaces in a Matheron-de Marsilly type of random flow.
Fil: Purrello, Víctor Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Iguain, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Kolton, Alejandro Benedykt. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We study the roughening of d-dimensional directed elastic interfaces subject to quenched random forces. As in the Larkin model, random forces are considered constant in the displacement direction and uncorrelated in the perpendicular direction. The elastic energy density contains an harmonic part, proportional to (∂xu)2, and an anharmonic part, proportional to (∂xu)2n, where u is the displacement field and n>1 an integer. By heuristic scaling arguments, we obtain the global roughness exponent ζ, the dynamic exponent z, and the harmonic to anharmonic crossover length scale, for arbitrary d and n, yielding an upper critical dimension dc(n)=4n. We find a precise agreement with numerical calculations in d=1. For the d=1 case we observe, however, an anomalous "faceted" scaling, with the spectral roughness exponent ζs satisfying ζs>ζ>1 for any finite n>1, hence invalidating the usual single-exponent scaling for two-point correlation functions, and the small gradient approximation of the elastic energy density in the thermodynamic limit. We show that such d=1 case is directly related to a family of Brownian functionals parameterized by n, ranging from the random-acceleration model for n=1 to the Lévy arcsine-law problem for n=∞. Our results may be experimentally relevant for describing the roughening of nonlinear elastic interfaces in a Matheron-de Marsilly type of random flow.
publishDate 2019
dc.date.none.fl_str_mv 2019-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/122918
Purrello, Víctor Hugo; Iguain, Jose Luis; Kolton, Alejandro Benedykt; Roughening of the anharmonic Larkin model; American Physical Society; Physical Review E; 99; 3; 3-2019; 1-11
2470-0045
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/122918
identifier_str_mv Purrello, Víctor Hugo; Iguain, Jose Luis; Kolton, Alejandro Benedykt; Roughening of the anharmonic Larkin model; American Physical Society; Physical Review E; 99; 3; 3-2019; 1-11
2470-0045
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.99.032105
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.99.032105
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614400165543936
score 13.260194