Simultaneous correlation of complementary set of sequences using a transpose generation approach
- Autores
- Funes, Marcos Alan; Donato, Patricio Gabriel; Hadad, Matías Nicolás; Carrica, Daniel Oscar; Benedetti, Mario
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Complementary sets of sequences are currently being applied to signal coding, radar, and multi-user systems, among others. Their particular mathematical properties make them adequate for multi-emission and noisy environments. Nowadays sustained efforts are being devoted to reduce the calculations involved in the generation and/or correlation of these signals by means of recursive algorithms. Some authors have proposed efficient algorithms that are based on modular architectures made up of adders, multipliers and delays. This work introduces a new approach to correlation algorithms of complementary sets of sequences, which is based on a transposition of the generation process. This approach allows to notoriously reduce calculations, and enables the simultaneous correlation of M sequences, without adopting time multiplexing schemes or complex parallel implementations. The correlation algorithm is theoretically demonstrated and its calculation performance is evaluated in a hardware reconfigurable platform. A comparison with other algorithms is included, considering the amount of calculations as a function of the length of the sequences.
Fil: Funes, Marcos Alan. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Donato, Patricio Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina
Fil: Hadad, Matías Nicolás. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carrica, Daniel Oscar. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Benedetti, Mario. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Complementary set of sequences
Correlation
Efficient architecture - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/96087
Ver los metadatos del registro completo
id |
CONICETDig_25cc067b515ac51c116aa328b431316f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/96087 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simultaneous correlation of complementary set of sequences using a transpose generation approachFunes, Marcos AlanDonato, Patricio GabrielHadad, Matías NicolásCarrica, Daniel OscarBenedetti, MarioComplementary set of sequencesCorrelationEfficient architecturehttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Complementary sets of sequences are currently being applied to signal coding, radar, and multi-user systems, among others. Their particular mathematical properties make them adequate for multi-emission and noisy environments. Nowadays sustained efforts are being devoted to reduce the calculations involved in the generation and/or correlation of these signals by means of recursive algorithms. Some authors have proposed efficient algorithms that are based on modular architectures made up of adders, multipliers and delays. This work introduces a new approach to correlation algorithms of complementary sets of sequences, which is based on a transposition of the generation process. This approach allows to notoriously reduce calculations, and enables the simultaneous correlation of M sequences, without adopting time multiplexing schemes or complex parallel implementations. The correlation algorithm is theoretically demonstrated and its calculation performance is evaluated in a hardware reconfigurable platform. A comparison with other algorithms is included, considering the amount of calculations as a function of the length of the sequences.Fil: Funes, Marcos Alan. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Donato, Patricio Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: Hadad, Matías Nicolás. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carrica, Daniel Oscar. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Benedetti, Mario. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAcademic Press Inc Elsevier Science2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96087Funes, Marcos Alan; Donato, Patricio Gabriel; Hadad, Matías Nicolás; Carrica, Daniel Oscar; Benedetti, Mario; Simultaneous correlation of complementary set of sequences using a transpose generation approach; Academic Press Inc Elsevier Science; Digital Signal Processing; 23; 3; 5-2013; 1044-10501051-2004CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1051200412002771info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dsp.2012.11.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:50:56Zoai:ri.conicet.gov.ar:11336/96087instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:50:56.731CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simultaneous correlation of complementary set of sequences using a transpose generation approach |
title |
Simultaneous correlation of complementary set of sequences using a transpose generation approach |
spellingShingle |
Simultaneous correlation of complementary set of sequences using a transpose generation approach Funes, Marcos Alan Complementary set of sequences Correlation Efficient architecture |
title_short |
Simultaneous correlation of complementary set of sequences using a transpose generation approach |
title_full |
Simultaneous correlation of complementary set of sequences using a transpose generation approach |
title_fullStr |
Simultaneous correlation of complementary set of sequences using a transpose generation approach |
title_full_unstemmed |
Simultaneous correlation of complementary set of sequences using a transpose generation approach |
title_sort |
Simultaneous correlation of complementary set of sequences using a transpose generation approach |
dc.creator.none.fl_str_mv |
Funes, Marcos Alan Donato, Patricio Gabriel Hadad, Matías Nicolás Carrica, Daniel Oscar Benedetti, Mario |
author |
Funes, Marcos Alan |
author_facet |
Funes, Marcos Alan Donato, Patricio Gabriel Hadad, Matías Nicolás Carrica, Daniel Oscar Benedetti, Mario |
author_role |
author |
author2 |
Donato, Patricio Gabriel Hadad, Matías Nicolás Carrica, Daniel Oscar Benedetti, Mario |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Complementary set of sequences Correlation Efficient architecture |
topic |
Complementary set of sequences Correlation Efficient architecture |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Complementary sets of sequences are currently being applied to signal coding, radar, and multi-user systems, among others. Their particular mathematical properties make them adequate for multi-emission and noisy environments. Nowadays sustained efforts are being devoted to reduce the calculations involved in the generation and/or correlation of these signals by means of recursive algorithms. Some authors have proposed efficient algorithms that are based on modular architectures made up of adders, multipliers and delays. This work introduces a new approach to correlation algorithms of complementary sets of sequences, which is based on a transposition of the generation process. This approach allows to notoriously reduce calculations, and enables the simultaneous correlation of M sequences, without adopting time multiplexing schemes or complex parallel implementations. The correlation algorithm is theoretically demonstrated and its calculation performance is evaluated in a hardware reconfigurable platform. A comparison with other algorithms is included, considering the amount of calculations as a function of the length of the sequences. Fil: Funes, Marcos Alan. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Donato, Patricio Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina Fil: Hadad, Matías Nicolás. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Carrica, Daniel Oscar. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Benedetti, Mario. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Complementary sets of sequences are currently being applied to signal coding, radar, and multi-user systems, among others. Their particular mathematical properties make them adequate for multi-emission and noisy environments. Nowadays sustained efforts are being devoted to reduce the calculations involved in the generation and/or correlation of these signals by means of recursive algorithms. Some authors have proposed efficient algorithms that are based on modular architectures made up of adders, multipliers and delays. This work introduces a new approach to correlation algorithms of complementary sets of sequences, which is based on a transposition of the generation process. This approach allows to notoriously reduce calculations, and enables the simultaneous correlation of M sequences, without adopting time multiplexing schemes or complex parallel implementations. The correlation algorithm is theoretically demonstrated and its calculation performance is evaluated in a hardware reconfigurable platform. A comparison with other algorithms is included, considering the amount of calculations as a function of the length of the sequences. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/96087 Funes, Marcos Alan; Donato, Patricio Gabriel; Hadad, Matías Nicolás; Carrica, Daniel Oscar; Benedetti, Mario; Simultaneous correlation of complementary set of sequences using a transpose generation approach; Academic Press Inc Elsevier Science; Digital Signal Processing; 23; 3; 5-2013; 1044-1050 1051-2004 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/96087 |
identifier_str_mv |
Funes, Marcos Alan; Donato, Patricio Gabriel; Hadad, Matías Nicolás; Carrica, Daniel Oscar; Benedetti, Mario; Simultaneous correlation of complementary set of sequences using a transpose generation approach; Academic Press Inc Elsevier Science; Digital Signal Processing; 23; 3; 5-2013; 1044-1050 1051-2004 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1051200412002771 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dsp.2012.11.008 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782192941793280 |
score |
12.982451 |