Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model

Autores
Schwindt, Claudio Daniel; Schlosser, Fernando; Bertinetti, María de Los Angeles; Stout, M.; Signorelli, Javier Walter
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the present work, an efficient formulation for the prediction of forming-limit diagrams (FLDs) based on the well-known Marciniak and Kuczynski (MK) theory using a Visco- Plastic Self-Consistent (VPSC) crystal-plasticity model has been detailed. The present model extends the previous MK-VPSC implementation (Signorelli et al., Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model, International Journal of Plasticity 25 (2009) 1e25) based on the NewtoneRaphson (N-R) method, which gives no guarantee of a robust iterative procedure. In order to avoid convergence problems and to reduce the computational cost of the coupled MK-VPSC scheme, a direct approach (DA) is proposed. The DA eliminates the need of the Jacobian evaluation associated with the N-R method as well as the iterative procedure tied to other possible minimization techniques. Moreover, the mechanical states outside and inside the groove are solved in the sample reference frame, avoiding the need to rotate the crystallographic orientations and the internal variables to the current band reference frame at each increment. In this way, only two calls to the material law are required per MK increment, obtaining a more robust numerical procedure with a significant computational cost reduction. Interestingly, the requirement of more complex boundary conditions does not substantially increase the number of internal VPSC iterations to achieve a given tolerance. Simulation results show that the direct MK-VPSC approach is consistent with that based on the N-R method. The generalized boundary conditions in the polycrystal model allowed us to calculate either strain-rate ratio or stress ratio based FLDs. The effect of using either strain-rate ratio or stress ratio paths on the FLDs has been investigated by imposing three types of pre-straining on the sheet metals. Formability predictions for a randomly-textured FCC material and for textured FCC, BCC and HCP polycrystals are presented and discussed. Finally, by considering dissimilar metals e extra deep-drawing quality steel (EDDQ), dual-phase steel (DP-780) and pure zinc (Zn20) e we evaluated the MK-VPSC model´s ability to predict forming-limit strains irrespective of microstructure and crystallography. The predicted results have been compared with experimental data and good agreement was found.
Fil: Schwindt, Claudio Daniel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Schlosser, Fernando. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Fil: Bertinetti, María de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Fil: Stout, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Fil: Signorelli, Javier Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Materia
Forming Limit
Anisotropy
Texture
Mk-Vpsc
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/6141

id CONICETDig_25cbe2907dd554c0da0fe8e9637fbcbf
oai_identifier_str oai:ri.conicet.gov.ar:11336/6141
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K modelSchwindt, Claudio DanielSchlosser, FernandoBertinetti, María de Los AngelesStout, M.Signorelli, Javier WalterForming LimitAnisotropyTextureMk-Vpschttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2In the present work, an efficient formulation for the prediction of forming-limit diagrams (FLDs) based on the well-known Marciniak and Kuczynski (MK) theory using a Visco- Plastic Self-Consistent (VPSC) crystal-plasticity model has been detailed. The present model extends the previous MK-VPSC implementation (Signorelli et al., Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model, International Journal of Plasticity 25 (2009) 1e25) based on the NewtoneRaphson (N-R) method, which gives no guarantee of a robust iterative procedure. In order to avoid convergence problems and to reduce the computational cost of the coupled MK-VPSC scheme, a direct approach (DA) is proposed. The DA eliminates the need of the Jacobian evaluation associated with the N-R method as well as the iterative procedure tied to other possible minimization techniques. Moreover, the mechanical states outside and inside the groove are solved in the sample reference frame, avoiding the need to rotate the crystallographic orientations and the internal variables to the current band reference frame at each increment. In this way, only two calls to the material law are required per MK increment, obtaining a more robust numerical procedure with a significant computational cost reduction. Interestingly, the requirement of more complex boundary conditions does not substantially increase the number of internal VPSC iterations to achieve a given tolerance. Simulation results show that the direct MK-VPSC approach is consistent with that based on the N-R method. The generalized boundary conditions in the polycrystal model allowed us to calculate either strain-rate ratio or stress ratio based FLDs. The effect of using either strain-rate ratio or stress ratio paths on the FLDs has been investigated by imposing three types of pre-straining on the sheet metals. Formability predictions for a randomly-textured FCC material and for textured FCC, BCC and HCP polycrystals are presented and discussed. Finally, by considering dissimilar metals e extra deep-drawing quality steel (EDDQ), dual-phase steel (DP-780) and pure zinc (Zn20) e we evaluated the MK-VPSC model´s ability to predict forming-limit strains irrespective of microstructure and crystallography. The predicted results have been compared with experimental data and good agreement was found.Fil: Schwindt, Claudio Daniel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schlosser, Fernando. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Bertinetti, María de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Stout, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Signorelli, Javier Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaElsevier2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6141Schwindt, Claudio Daniel; Schlosser, Fernando; Bertinetti, María de Los Angeles; Stout, M.; Signorelli, Javier Walter; Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model; Elsevier; International Journal of Plasticity; 73; 12-2014; 62-990749-6419enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0749641915000145info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijplas.2015.01.005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:18Zoai:ri.conicet.gov.ar:11336/6141instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:18.374CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model
title Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model
spellingShingle Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model
Schwindt, Claudio Daniel
Forming Limit
Anisotropy
Texture
Mk-Vpsc
title_short Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model
title_full Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model
title_fullStr Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model
title_full_unstemmed Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model
title_sort Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model
dc.creator.none.fl_str_mv Schwindt, Claudio Daniel
Schlosser, Fernando
Bertinetti, María de Los Angeles
Stout, M.
Signorelli, Javier Walter
author Schwindt, Claudio Daniel
author_facet Schwindt, Claudio Daniel
Schlosser, Fernando
Bertinetti, María de Los Angeles
Stout, M.
Signorelli, Javier Walter
author_role author
author2 Schlosser, Fernando
Bertinetti, María de Los Angeles
Stout, M.
Signorelli, Javier Walter
author2_role author
author
author
author
dc.subject.none.fl_str_mv Forming Limit
Anisotropy
Texture
Mk-Vpsc
topic Forming Limit
Anisotropy
Texture
Mk-Vpsc
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In the present work, an efficient formulation for the prediction of forming-limit diagrams (FLDs) based on the well-known Marciniak and Kuczynski (MK) theory using a Visco- Plastic Self-Consistent (VPSC) crystal-plasticity model has been detailed. The present model extends the previous MK-VPSC implementation (Signorelli et al., Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model, International Journal of Plasticity 25 (2009) 1e25) based on the NewtoneRaphson (N-R) method, which gives no guarantee of a robust iterative procedure. In order to avoid convergence problems and to reduce the computational cost of the coupled MK-VPSC scheme, a direct approach (DA) is proposed. The DA eliminates the need of the Jacobian evaluation associated with the N-R method as well as the iterative procedure tied to other possible minimization techniques. Moreover, the mechanical states outside and inside the groove are solved in the sample reference frame, avoiding the need to rotate the crystallographic orientations and the internal variables to the current band reference frame at each increment. In this way, only two calls to the material law are required per MK increment, obtaining a more robust numerical procedure with a significant computational cost reduction. Interestingly, the requirement of more complex boundary conditions does not substantially increase the number of internal VPSC iterations to achieve a given tolerance. Simulation results show that the direct MK-VPSC approach is consistent with that based on the N-R method. The generalized boundary conditions in the polycrystal model allowed us to calculate either strain-rate ratio or stress ratio based FLDs. The effect of using either strain-rate ratio or stress ratio paths on the FLDs has been investigated by imposing three types of pre-straining on the sheet metals. Formability predictions for a randomly-textured FCC material and for textured FCC, BCC and HCP polycrystals are presented and discussed. Finally, by considering dissimilar metals e extra deep-drawing quality steel (EDDQ), dual-phase steel (DP-780) and pure zinc (Zn20) e we evaluated the MK-VPSC model´s ability to predict forming-limit strains irrespective of microstructure and crystallography. The predicted results have been compared with experimental data and good agreement was found.
Fil: Schwindt, Claudio Daniel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Schlosser, Fernando. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Fil: Bertinetti, María de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Fil: Stout, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Fil: Signorelli, Javier Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
description In the present work, an efficient formulation for the prediction of forming-limit diagrams (FLDs) based on the well-known Marciniak and Kuczynski (MK) theory using a Visco- Plastic Self-Consistent (VPSC) crystal-plasticity model has been detailed. The present model extends the previous MK-VPSC implementation (Signorelli et al., Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model, International Journal of Plasticity 25 (2009) 1e25) based on the NewtoneRaphson (N-R) method, which gives no guarantee of a robust iterative procedure. In order to avoid convergence problems and to reduce the computational cost of the coupled MK-VPSC scheme, a direct approach (DA) is proposed. The DA eliminates the need of the Jacobian evaluation associated with the N-R method as well as the iterative procedure tied to other possible minimization techniques. Moreover, the mechanical states outside and inside the groove are solved in the sample reference frame, avoiding the need to rotate the crystallographic orientations and the internal variables to the current band reference frame at each increment. In this way, only two calls to the material law are required per MK increment, obtaining a more robust numerical procedure with a significant computational cost reduction. Interestingly, the requirement of more complex boundary conditions does not substantially increase the number of internal VPSC iterations to achieve a given tolerance. Simulation results show that the direct MK-VPSC approach is consistent with that based on the N-R method. The generalized boundary conditions in the polycrystal model allowed us to calculate either strain-rate ratio or stress ratio based FLDs. The effect of using either strain-rate ratio or stress ratio paths on the FLDs has been investigated by imposing three types of pre-straining on the sheet metals. Formability predictions for a randomly-textured FCC material and for textured FCC, BCC and HCP polycrystals are presented and discussed. Finally, by considering dissimilar metals e extra deep-drawing quality steel (EDDQ), dual-phase steel (DP-780) and pure zinc (Zn20) e we evaluated the MK-VPSC model´s ability to predict forming-limit strains irrespective of microstructure and crystallography. The predicted results have been compared with experimental data and good agreement was found.
publishDate 2014
dc.date.none.fl_str_mv 2014-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/6141
Schwindt, Claudio Daniel; Schlosser, Fernando; Bertinetti, María de Los Angeles; Stout, M.; Signorelli, Javier Walter; Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model; Elsevier; International Journal of Plasticity; 73; 12-2014; 62-99
0749-6419
url http://hdl.handle.net/11336/6141
identifier_str_mv Schwindt, Claudio Daniel; Schlosser, Fernando; Bertinetti, María de Los Angeles; Stout, M.; Signorelli, Javier Walter; Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model; Elsevier; International Journal of Plasticity; 73; 12-2014; 62-99
0749-6419
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0749641915000145
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijplas.2015.01.005
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614393188319232
score 13.070432