Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model
- Autores
- Schwindt, Claudio Daniel; Schlosser, Fernando; Bertinetti, María de Los Angeles; Stout, M.; Signorelli, Javier Walter
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the present work, an efficient formulation for the prediction of forming-limit diagrams (FLDs) based on the well-known Marciniak and Kuczynski (MK) theory using a Visco- Plastic Self-Consistent (VPSC) crystal-plasticity model has been detailed. The present model extends the previous MK-VPSC implementation (Signorelli et al., Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model, International Journal of Plasticity 25 (2009) 1e25) based on the NewtoneRaphson (N-R) method, which gives no guarantee of a robust iterative procedure. In order to avoid convergence problems and to reduce the computational cost of the coupled MK-VPSC scheme, a direct approach (DA) is proposed. The DA eliminates the need of the Jacobian evaluation associated with the N-R method as well as the iterative procedure tied to other possible minimization techniques. Moreover, the mechanical states outside and inside the groove are solved in the sample reference frame, avoiding the need to rotate the crystallographic orientations and the internal variables to the current band reference frame at each increment. In this way, only two calls to the material law are required per MK increment, obtaining a more robust numerical procedure with a significant computational cost reduction. Interestingly, the requirement of more complex boundary conditions does not substantially increase the number of internal VPSC iterations to achieve a given tolerance. Simulation results show that the direct MK-VPSC approach is consistent with that based on the N-R method. The generalized boundary conditions in the polycrystal model allowed us to calculate either strain-rate ratio or stress ratio based FLDs. The effect of using either strain-rate ratio or stress ratio paths on the FLDs has been investigated by imposing three types of pre-straining on the sheet metals. Formability predictions for a randomly-textured FCC material and for textured FCC, BCC and HCP polycrystals are presented and discussed. Finally, by considering dissimilar metals e extra deep-drawing quality steel (EDDQ), dual-phase steel (DP-780) and pure zinc (Zn20) e we evaluated the MK-VPSC model´s ability to predict forming-limit strains irrespective of microstructure and crystallography. The predicted results have been compared with experimental data and good agreement was found.
Fil: Schwindt, Claudio Daniel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Schlosser, Fernando. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Fil: Bertinetti, María de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Fil: Stout, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Fil: Signorelli, Javier Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina - Materia
-
Forming Limit
Anisotropy
Texture
Mk-Vpsc - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6141
Ver los metadatos del registro completo
id |
CONICETDig_25cbe2907dd554c0da0fe8e9637fbcbf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6141 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K modelSchwindt, Claudio DanielSchlosser, FernandoBertinetti, María de Los AngelesStout, M.Signorelli, Javier WalterForming LimitAnisotropyTextureMk-Vpschttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2In the present work, an efficient formulation for the prediction of forming-limit diagrams (FLDs) based on the well-known Marciniak and Kuczynski (MK) theory using a Visco- Plastic Self-Consistent (VPSC) crystal-plasticity model has been detailed. The present model extends the previous MK-VPSC implementation (Signorelli et al., Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model, International Journal of Plasticity 25 (2009) 1e25) based on the NewtoneRaphson (N-R) method, which gives no guarantee of a robust iterative procedure. In order to avoid convergence problems and to reduce the computational cost of the coupled MK-VPSC scheme, a direct approach (DA) is proposed. The DA eliminates the need of the Jacobian evaluation associated with the N-R method as well as the iterative procedure tied to other possible minimization techniques. Moreover, the mechanical states outside and inside the groove are solved in the sample reference frame, avoiding the need to rotate the crystallographic orientations and the internal variables to the current band reference frame at each increment. In this way, only two calls to the material law are required per MK increment, obtaining a more robust numerical procedure with a significant computational cost reduction. Interestingly, the requirement of more complex boundary conditions does not substantially increase the number of internal VPSC iterations to achieve a given tolerance. Simulation results show that the direct MK-VPSC approach is consistent with that based on the N-R method. The generalized boundary conditions in the polycrystal model allowed us to calculate either strain-rate ratio or stress ratio based FLDs. The effect of using either strain-rate ratio or stress ratio paths on the FLDs has been investigated by imposing three types of pre-straining on the sheet metals. Formability predictions for a randomly-textured FCC material and for textured FCC, BCC and HCP polycrystals are presented and discussed. Finally, by considering dissimilar metals e extra deep-drawing quality steel (EDDQ), dual-phase steel (DP-780) and pure zinc (Zn20) e we evaluated the MK-VPSC model´s ability to predict forming-limit strains irrespective of microstructure and crystallography. The predicted results have been compared with experimental data and good agreement was found.Fil: Schwindt, Claudio Daniel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schlosser, Fernando. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Bertinetti, María de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Stout, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Signorelli, Javier Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaElsevier2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6141Schwindt, Claudio Daniel; Schlosser, Fernando; Bertinetti, María de Los Angeles; Stout, M.; Signorelli, Javier Walter; Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model; Elsevier; International Journal of Plasticity; 73; 12-2014; 62-990749-6419enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0749641915000145info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijplas.2015.01.005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:18Zoai:ri.conicet.gov.ar:11336/6141instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:18.374CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model |
title |
Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model |
spellingShingle |
Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model Schwindt, Claudio Daniel Forming Limit Anisotropy Texture Mk-Vpsc |
title_short |
Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model |
title_full |
Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model |
title_fullStr |
Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model |
title_full_unstemmed |
Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model |
title_sort |
Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model |
dc.creator.none.fl_str_mv |
Schwindt, Claudio Daniel Schlosser, Fernando Bertinetti, María de Los Angeles Stout, M. Signorelli, Javier Walter |
author |
Schwindt, Claudio Daniel |
author_facet |
Schwindt, Claudio Daniel Schlosser, Fernando Bertinetti, María de Los Angeles Stout, M. Signorelli, Javier Walter |
author_role |
author |
author2 |
Schlosser, Fernando Bertinetti, María de Los Angeles Stout, M. Signorelli, Javier Walter |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Forming Limit Anisotropy Texture Mk-Vpsc |
topic |
Forming Limit Anisotropy Texture Mk-Vpsc |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In the present work, an efficient formulation for the prediction of forming-limit diagrams (FLDs) based on the well-known Marciniak and Kuczynski (MK) theory using a Visco- Plastic Self-Consistent (VPSC) crystal-plasticity model has been detailed. The present model extends the previous MK-VPSC implementation (Signorelli et al., Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model, International Journal of Plasticity 25 (2009) 1e25) based on the NewtoneRaphson (N-R) method, which gives no guarantee of a robust iterative procedure. In order to avoid convergence problems and to reduce the computational cost of the coupled MK-VPSC scheme, a direct approach (DA) is proposed. The DA eliminates the need of the Jacobian evaluation associated with the N-R method as well as the iterative procedure tied to other possible minimization techniques. Moreover, the mechanical states outside and inside the groove are solved in the sample reference frame, avoiding the need to rotate the crystallographic orientations and the internal variables to the current band reference frame at each increment. In this way, only two calls to the material law are required per MK increment, obtaining a more robust numerical procedure with a significant computational cost reduction. Interestingly, the requirement of more complex boundary conditions does not substantially increase the number of internal VPSC iterations to achieve a given tolerance. Simulation results show that the direct MK-VPSC approach is consistent with that based on the N-R method. The generalized boundary conditions in the polycrystal model allowed us to calculate either strain-rate ratio or stress ratio based FLDs. The effect of using either strain-rate ratio or stress ratio paths on the FLDs has been investigated by imposing three types of pre-straining on the sheet metals. Formability predictions for a randomly-textured FCC material and for textured FCC, BCC and HCP polycrystals are presented and discussed. Finally, by considering dissimilar metals e extra deep-drawing quality steel (EDDQ), dual-phase steel (DP-780) and pure zinc (Zn20) e we evaluated the MK-VPSC model´s ability to predict forming-limit strains irrespective of microstructure and crystallography. The predicted results have been compared with experimental data and good agreement was found. Fil: Schwindt, Claudio Daniel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Schlosser, Fernando. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina Fil: Bertinetti, María de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina Fil: Stout, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina Fil: Signorelli, Javier Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina |
description |
In the present work, an efficient formulation for the prediction of forming-limit diagrams (FLDs) based on the well-known Marciniak and Kuczynski (MK) theory using a Visco- Plastic Self-Consistent (VPSC) crystal-plasticity model has been detailed. The present model extends the previous MK-VPSC implementation (Signorelli et al., Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model, International Journal of Plasticity 25 (2009) 1e25) based on the NewtoneRaphson (N-R) method, which gives no guarantee of a robust iterative procedure. In order to avoid convergence problems and to reduce the computational cost of the coupled MK-VPSC scheme, a direct approach (DA) is proposed. The DA eliminates the need of the Jacobian evaluation associated with the N-R method as well as the iterative procedure tied to other possible minimization techniques. Moreover, the mechanical states outside and inside the groove are solved in the sample reference frame, avoiding the need to rotate the crystallographic orientations and the internal variables to the current band reference frame at each increment. In this way, only two calls to the material law are required per MK increment, obtaining a more robust numerical procedure with a significant computational cost reduction. Interestingly, the requirement of more complex boundary conditions does not substantially increase the number of internal VPSC iterations to achieve a given tolerance. Simulation results show that the direct MK-VPSC approach is consistent with that based on the N-R method. The generalized boundary conditions in the polycrystal model allowed us to calculate either strain-rate ratio or stress ratio based FLDs. The effect of using either strain-rate ratio or stress ratio paths on the FLDs has been investigated by imposing three types of pre-straining on the sheet metals. Formability predictions for a randomly-textured FCC material and for textured FCC, BCC and HCP polycrystals are presented and discussed. Finally, by considering dissimilar metals e extra deep-drawing quality steel (EDDQ), dual-phase steel (DP-780) and pure zinc (Zn20) e we evaluated the MK-VPSC model´s ability to predict forming-limit strains irrespective of microstructure and crystallography. The predicted results have been compared with experimental data and good agreement was found. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6141 Schwindt, Claudio Daniel; Schlosser, Fernando; Bertinetti, María de Los Angeles; Stout, M.; Signorelli, Javier Walter; Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model; Elsevier; International Journal of Plasticity; 73; 12-2014; 62-99 0749-6419 |
url |
http://hdl.handle.net/11336/6141 |
identifier_str_mv |
Schwindt, Claudio Daniel; Schlosser, Fernando; Bertinetti, María de Los Angeles; Stout, M.; Signorelli, Javier Walter; Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model; Elsevier; International Journal of Plasticity; 73; 12-2014; 62-99 0749-6419 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0749641915000145 info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijplas.2015.01.005 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614393188319232 |
score |
13.070432 |