Explorando temperaturas máximas y mínimas en diferentes reanálisis. Parte 1: Campos medios estacionales
- Autores
- Zaninelli, Pablo Gabriel; Carril, Andrea Fabiana; Menendez, Claudio Guillermo
- Año de publicación
- 2015
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Con la motivación de que a menudo se emplean reanálisis para estudiar el clima regional aun cuando no es clara la magnitud de sus errores, en este artículo se explora la incertidumbre inherente a utilizar datos de reanálisis de temperatura máxima y mínima en el sudeste de Sudamérica. Se comparan campos medios observacionales de TX (verano) y TN (invierno) (Tencer y otros, 2011), tres diferentes reanálisis multidecádicos (NCEP, ERA40 y 20CR) y cuatro modelos climáticos regionales (LMDZ, PROMES, RCA y REMO). El reanálisis más aceptable para representar el campo medio de TX es ERA40, mientras que NCEP es el más aceptable para TN. El error del ensemble de reanálisis presenta magnitudes similares para ambas variables (errores menores a 4oC), pero la dispersión entre los reanálisis individuales es mayor en verano. La mayor dispersión entre reanálisis se encuentra en el centro de la Argentina en esa estación. Se analizó también el balance de energía en superficie para los diferentes reanálisis, encontrándose que los procesos intervinientes en este balance impactan directamente sobre la temperatura. Los errores en la temperatura están, por lo tanto, en parte vinculados con errores en la determinación de los flujos de calor sensible y latente así como de la radiación neta. La capacidad de los reanálisis y de los modelos regionales para representar la distribución geográfica de TX y TN se analizó mediante diagramas de Taylor. Los ensembles de reanálisis o de modelos regionales suelen tener mejores estadísticos en estos diagramas que los reanálisis o modelos individuales. Además, los estadísticos exhibidos en los diagramas de Taylor sugieren que los errores en la distribución geográfica de las anomalías espaciales de temperatura tienen una magnitud similar para los reanálisis y para los modelos regionales analizados.
Reanalysis data are often used to carry out scientific research, although if it is not clear the extent their errors. This article explores the inherent uncertainty about using reanalysis data of maximum temperature and minimum in southeastern South America. It was compared seasonal mean fields TX (summer) and TN (winter) observed and interpolated grid points (Tencer et al., 2011), three different multidecadal-reanalysis (NCEP, ERA40 y 20CR) and four regional climate models (LMDZ, PROMES, RCA and REMO). It was studied also the surface energy balance for each reanalysis and was found that the involved processes in this balance affect directly to the temperature. Errors in temperature are partially linked with errors arising from how regional climate models reproduce the sensible heat flux, latent heat flux and surface net radiation. The ability of the reanalysis and regional climate models to represent the geographical distribution of TX and TN it was analyzed through Taylor diagrams. Ensembles of reanalysis or ensembles of regional climate models usually have better statistics in these diagrams than individual reanalysis or models. Moreover, the statistics shown by the Taylor diagrams suggest that errors in the geographical distribution of spatial anomalies of temperature of both reanalysis and regional climate models have similar magnitudes.
Fil: Zaninelli, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos; Argentina
Fil: Carril, Andrea Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos; Argentina
Fil: Menendez, Claudio Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina - Materia
-
TEMPERATURA MÁXIMA
TEMPERATURA MÍNIMA
DATOS EN PUNTO DE RETICULADO
REANÁLISIS
MODELOS CLIMÁTICOS REGIONALES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4512
Ver los metadatos del registro completo
id |
CONICETDig_257ad0798f03185d6f8655dd4cf6b5e2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4512 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Explorando temperaturas máximas y mínimas en diferentes reanálisis. Parte 1: Campos medios estacionalesExploring maximum and minimum temperatures in different reanalysis. Part 1: means seasonal patternsZaninelli, Pablo GabrielCarril, Andrea FabianaMenendez, Claudio GuillermoTEMPERATURA MÁXIMATEMPERATURA MÍNIMADATOS EN PUNTO DE RETICULADOREANÁLISISMODELOS CLIMÁTICOS REGIONALEShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Con la motivación de que a menudo se emplean reanálisis para estudiar el clima regional aun cuando no es clara la magnitud de sus errores, en este artículo se explora la incertidumbre inherente a utilizar datos de reanálisis de temperatura máxima y mínima en el sudeste de Sudamérica. Se comparan campos medios observacionales de TX (verano) y TN (invierno) (Tencer y otros, 2011), tres diferentes reanálisis multidecádicos (NCEP, ERA40 y 20CR) y cuatro modelos climáticos regionales (LMDZ, PROMES, RCA y REMO). El reanálisis más aceptable para representar el campo medio de TX es ERA40, mientras que NCEP es el más aceptable para TN. El error del ensemble de reanálisis presenta magnitudes similares para ambas variables (errores menores a 4oC), pero la dispersión entre los reanálisis individuales es mayor en verano. La mayor dispersión entre reanálisis se encuentra en el centro de la Argentina en esa estación. Se analizó también el balance de energía en superficie para los diferentes reanálisis, encontrándose que los procesos intervinientes en este balance impactan directamente sobre la temperatura. Los errores en la temperatura están, por lo tanto, en parte vinculados con errores en la determinación de los flujos de calor sensible y latente así como de la radiación neta. La capacidad de los reanálisis y de los modelos regionales para representar la distribución geográfica de TX y TN se analizó mediante diagramas de Taylor. Los ensembles de reanálisis o de modelos regionales suelen tener mejores estadísticos en estos diagramas que los reanálisis o modelos individuales. Además, los estadísticos exhibidos en los diagramas de Taylor sugieren que los errores en la distribución geográfica de las anomalías espaciales de temperatura tienen una magnitud similar para los reanálisis y para los modelos regionales analizados.Reanalysis data are often used to carry out scientific research, although if it is not clear the extent their errors. This article explores the inherent uncertainty about using reanalysis data of maximum temperature and minimum in southeastern South America. It was compared seasonal mean fields TX (summer) and TN (winter) observed and interpolated grid points (Tencer et al., 2011), three different multidecadal-reanalysis (NCEP, ERA40 y 20CR) and four regional climate models (LMDZ, PROMES, RCA and REMO). It was studied also the surface energy balance for each reanalysis and was found that the involved processes in this balance affect directly to the temperature. Errors in temperature are partially linked with errors arising from how regional climate models reproduce the sensible heat flux, latent heat flux and surface net radiation. The ability of the reanalysis and regional climate models to represent the geographical distribution of TX and TN it was analyzed through Taylor diagrams. Ensembles of reanalysis or ensembles of regional climate models usually have better statistics in these diagrams than individual reanalysis or models. Moreover, the statistics shown by the Taylor diagrams suggest that errors in the geographical distribution of spatial anomalies of temperature of both reanalysis and regional climate models have similar magnitudes.Fil: Zaninelli, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos; ArgentinaFil: Carril, Andrea Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos; ArgentinaFil: Menendez, Claudio Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaCentro Argentino de Meteorólogos2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/rarapplication/pdfhttp://hdl.handle.net/11336/4512Zaninelli, Pablo Gabriel; Carril, Andrea Fabiana; Menendez, Claudio Guillermo; Explorando temperaturas máximas y mínimas en diferentes reanálisis. Parte 1: Campos medios estacionales; Centro Argentino de Meteorólogos; Meteorológica; 40; 1; 6-2015; 43-580325-187X1850-468Xspainfo:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?pid=S1850-468X2015000100003&script=sci_arttextinfo:eu-repo/semantics/altIdentifier/url/http://www.cenamet.org.ar/archivos/RevistaMeteorologica%202015-06-12.pdfinfo:eu-repo/semantics/altIdentifier/issn/0325-187Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:37:38Zoai:ri.conicet.gov.ar:11336/4512instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:37:38.321CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Explorando temperaturas máximas y mínimas en diferentes reanálisis. Parte 1: Campos medios estacionales Exploring maximum and minimum temperatures in different reanalysis. Part 1: means seasonal patterns |
title |
Explorando temperaturas máximas y mínimas en diferentes reanálisis. Parte 1: Campos medios estacionales |
spellingShingle |
Explorando temperaturas máximas y mínimas en diferentes reanálisis. Parte 1: Campos medios estacionales Zaninelli, Pablo Gabriel TEMPERATURA MÁXIMA TEMPERATURA MÍNIMA DATOS EN PUNTO DE RETICULADO REANÁLISIS MODELOS CLIMÁTICOS REGIONALES |
title_short |
Explorando temperaturas máximas y mínimas en diferentes reanálisis. Parte 1: Campos medios estacionales |
title_full |
Explorando temperaturas máximas y mínimas en diferentes reanálisis. Parte 1: Campos medios estacionales |
title_fullStr |
Explorando temperaturas máximas y mínimas en diferentes reanálisis. Parte 1: Campos medios estacionales |
title_full_unstemmed |
Explorando temperaturas máximas y mínimas en diferentes reanálisis. Parte 1: Campos medios estacionales |
title_sort |
Explorando temperaturas máximas y mínimas en diferentes reanálisis. Parte 1: Campos medios estacionales |
dc.creator.none.fl_str_mv |
Zaninelli, Pablo Gabriel Carril, Andrea Fabiana Menendez, Claudio Guillermo |
author |
Zaninelli, Pablo Gabriel |
author_facet |
Zaninelli, Pablo Gabriel Carril, Andrea Fabiana Menendez, Claudio Guillermo |
author_role |
author |
author2 |
Carril, Andrea Fabiana Menendez, Claudio Guillermo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
TEMPERATURA MÁXIMA TEMPERATURA MÍNIMA DATOS EN PUNTO DE RETICULADO REANÁLISIS MODELOS CLIMÁTICOS REGIONALES |
topic |
TEMPERATURA MÁXIMA TEMPERATURA MÍNIMA DATOS EN PUNTO DE RETICULADO REANÁLISIS MODELOS CLIMÁTICOS REGIONALES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Con la motivación de que a menudo se emplean reanálisis para estudiar el clima regional aun cuando no es clara la magnitud de sus errores, en este artículo se explora la incertidumbre inherente a utilizar datos de reanálisis de temperatura máxima y mínima en el sudeste de Sudamérica. Se comparan campos medios observacionales de TX (verano) y TN (invierno) (Tencer y otros, 2011), tres diferentes reanálisis multidecádicos (NCEP, ERA40 y 20CR) y cuatro modelos climáticos regionales (LMDZ, PROMES, RCA y REMO). El reanálisis más aceptable para representar el campo medio de TX es ERA40, mientras que NCEP es el más aceptable para TN. El error del ensemble de reanálisis presenta magnitudes similares para ambas variables (errores menores a 4oC), pero la dispersión entre los reanálisis individuales es mayor en verano. La mayor dispersión entre reanálisis se encuentra en el centro de la Argentina en esa estación. Se analizó también el balance de energía en superficie para los diferentes reanálisis, encontrándose que los procesos intervinientes en este balance impactan directamente sobre la temperatura. Los errores en la temperatura están, por lo tanto, en parte vinculados con errores en la determinación de los flujos de calor sensible y latente así como de la radiación neta. La capacidad de los reanálisis y de los modelos regionales para representar la distribución geográfica de TX y TN se analizó mediante diagramas de Taylor. Los ensembles de reanálisis o de modelos regionales suelen tener mejores estadísticos en estos diagramas que los reanálisis o modelos individuales. Además, los estadísticos exhibidos en los diagramas de Taylor sugieren que los errores en la distribución geográfica de las anomalías espaciales de temperatura tienen una magnitud similar para los reanálisis y para los modelos regionales analizados. Reanalysis data are often used to carry out scientific research, although if it is not clear the extent their errors. This article explores the inherent uncertainty about using reanalysis data of maximum temperature and minimum in southeastern South America. It was compared seasonal mean fields TX (summer) and TN (winter) observed and interpolated grid points (Tencer et al., 2011), three different multidecadal-reanalysis (NCEP, ERA40 y 20CR) and four regional climate models (LMDZ, PROMES, RCA and REMO). It was studied also the surface energy balance for each reanalysis and was found that the involved processes in this balance affect directly to the temperature. Errors in temperature are partially linked with errors arising from how regional climate models reproduce the sensible heat flux, latent heat flux and surface net radiation. The ability of the reanalysis and regional climate models to represent the geographical distribution of TX and TN it was analyzed through Taylor diagrams. Ensembles of reanalysis or ensembles of regional climate models usually have better statistics in these diagrams than individual reanalysis or models. Moreover, the statistics shown by the Taylor diagrams suggest that errors in the geographical distribution of spatial anomalies of temperature of both reanalysis and regional climate models have similar magnitudes. Fil: Zaninelli, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos; Argentina Fil: Carril, Andrea Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos; Argentina Fil: Menendez, Claudio Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina |
description |
Con la motivación de que a menudo se emplean reanálisis para estudiar el clima regional aun cuando no es clara la magnitud de sus errores, en este artículo se explora la incertidumbre inherente a utilizar datos de reanálisis de temperatura máxima y mínima en el sudeste de Sudamérica. Se comparan campos medios observacionales de TX (verano) y TN (invierno) (Tencer y otros, 2011), tres diferentes reanálisis multidecádicos (NCEP, ERA40 y 20CR) y cuatro modelos climáticos regionales (LMDZ, PROMES, RCA y REMO). El reanálisis más aceptable para representar el campo medio de TX es ERA40, mientras que NCEP es el más aceptable para TN. El error del ensemble de reanálisis presenta magnitudes similares para ambas variables (errores menores a 4oC), pero la dispersión entre los reanálisis individuales es mayor en verano. La mayor dispersión entre reanálisis se encuentra en el centro de la Argentina en esa estación. Se analizó también el balance de energía en superficie para los diferentes reanálisis, encontrándose que los procesos intervinientes en este balance impactan directamente sobre la temperatura. Los errores en la temperatura están, por lo tanto, en parte vinculados con errores en la determinación de los flujos de calor sensible y latente así como de la radiación neta. La capacidad de los reanálisis y de los modelos regionales para representar la distribución geográfica de TX y TN se analizó mediante diagramas de Taylor. Los ensembles de reanálisis o de modelos regionales suelen tener mejores estadísticos en estos diagramas que los reanálisis o modelos individuales. Además, los estadísticos exhibidos en los diagramas de Taylor sugieren que los errores en la distribución geográfica de las anomalías espaciales de temperatura tienen una magnitud similar para los reanálisis y para los modelos regionales analizados. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4512 Zaninelli, Pablo Gabriel; Carril, Andrea Fabiana; Menendez, Claudio Guillermo; Explorando temperaturas máximas y mínimas en diferentes reanálisis. Parte 1: Campos medios estacionales; Centro Argentino de Meteorólogos; Meteorológica; 40; 1; 6-2015; 43-58 0325-187X 1850-468X |
url |
http://hdl.handle.net/11336/4512 |
identifier_str_mv |
Zaninelli, Pablo Gabriel; Carril, Andrea Fabiana; Menendez, Claudio Guillermo; Explorando temperaturas máximas y mínimas en diferentes reanálisis. Parte 1: Campos medios estacionales; Centro Argentino de Meteorólogos; Meteorológica; 40; 1; 6-2015; 43-58 0325-187X 1850-468X |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?pid=S1850-468X2015000100003&script=sci_arttext info:eu-repo/semantics/altIdentifier/url/http://www.cenamet.org.ar/archivos/RevistaMeteorologica%202015-06-12.pdf info:eu-repo/semantics/altIdentifier/issn/0325-187X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/rar application/pdf |
dc.publisher.none.fl_str_mv |
Centro Argentino de Meteorólogos |
publisher.none.fl_str_mv |
Centro Argentino de Meteorólogos |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082850090123264 |
score |
13.22299 |