Microscopic model of a phononic refrigerator

Autores
Arrachea, Liliana del Carmen; Mucciolo, Eduardo R.; Chamon, Claudio; Capaz, Rodrigo B.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We analyze a simple microscopic model to pump heat from a cold to a hot reservoir in a nanomechanical system. The model consists of a one-dimensional chain of masses and springs coupled to a back gate through which a time-dependent perturbation is applied. The action of the gate creates a moving phononic barrier by locally pinning a mass. We solve the problem numerically using a nonequilibrium Green's function technique. For low driving frequencies and for sharp traveling barriers, we show that this microscopic model realizes a phonon refrigerator. © 2012 American Physical Society.
Fil: Arrachea, Liliana del Carmen. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mucciolo, Eduardo R.. University Of Central Florida; Estados Unidos
Fil: Chamon, Claudio. Boston University; Estados Unidos
Fil: Capaz, Rodrigo B.. Universidade Federal do Rio de Janeiro; Brasil
Materia
Thermal
Quantum
Transport
Phonon
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/56143

id CONICETDig_252ea7cbb03ca0eeefcf73d67920fc94
oai_identifier_str oai:ri.conicet.gov.ar:11336/56143
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Microscopic model of a phononic refrigeratorArrachea, Liliana del CarmenMucciolo, Eduardo R.Chamon, ClaudioCapaz, Rodrigo B.ThermalQuantumTransportPhononhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We analyze a simple microscopic model to pump heat from a cold to a hot reservoir in a nanomechanical system. The model consists of a one-dimensional chain of masses and springs coupled to a back gate through which a time-dependent perturbation is applied. The action of the gate creates a moving phononic barrier by locally pinning a mass. We solve the problem numerically using a nonequilibrium Green's function technique. For low driving frequencies and for sharp traveling barriers, we show that this microscopic model realizes a phonon refrigerator. © 2012 American Physical Society.Fil: Arrachea, Liliana del Carmen. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mucciolo, Eduardo R.. University Of Central Florida; Estados UnidosFil: Chamon, Claudio. Boston University; Estados UnidosFil: Capaz, Rodrigo B.. Universidade Federal do Rio de Janeiro; BrasilAmerican Physical Society2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56143Arrachea, Liliana del Carmen; Mucciolo, Eduardo R.; Chamon, Claudio; Capaz, Rodrigo B.; Microscopic model of a phononic refrigerator; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 86; 12; 9-2012; 125424-1254361098-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.86.125424info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:25Zoai:ri.conicet.gov.ar:11336/56143instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:26.093CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Microscopic model of a phononic refrigerator
title Microscopic model of a phononic refrigerator
spellingShingle Microscopic model of a phononic refrigerator
Arrachea, Liliana del Carmen
Thermal
Quantum
Transport
Phonon
title_short Microscopic model of a phononic refrigerator
title_full Microscopic model of a phononic refrigerator
title_fullStr Microscopic model of a phononic refrigerator
title_full_unstemmed Microscopic model of a phononic refrigerator
title_sort Microscopic model of a phononic refrigerator
dc.creator.none.fl_str_mv Arrachea, Liliana del Carmen
Mucciolo, Eduardo R.
Chamon, Claudio
Capaz, Rodrigo B.
author Arrachea, Liliana del Carmen
author_facet Arrachea, Liliana del Carmen
Mucciolo, Eduardo R.
Chamon, Claudio
Capaz, Rodrigo B.
author_role author
author2 Mucciolo, Eduardo R.
Chamon, Claudio
Capaz, Rodrigo B.
author2_role author
author
author
dc.subject.none.fl_str_mv Thermal
Quantum
Transport
Phonon
topic Thermal
Quantum
Transport
Phonon
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We analyze a simple microscopic model to pump heat from a cold to a hot reservoir in a nanomechanical system. The model consists of a one-dimensional chain of masses and springs coupled to a back gate through which a time-dependent perturbation is applied. The action of the gate creates a moving phononic barrier by locally pinning a mass. We solve the problem numerically using a nonequilibrium Green's function technique. For low driving frequencies and for sharp traveling barriers, we show that this microscopic model realizes a phonon refrigerator. © 2012 American Physical Society.
Fil: Arrachea, Liliana del Carmen. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mucciolo, Eduardo R.. University Of Central Florida; Estados Unidos
Fil: Chamon, Claudio. Boston University; Estados Unidos
Fil: Capaz, Rodrigo B.. Universidade Federal do Rio de Janeiro; Brasil
description We analyze a simple microscopic model to pump heat from a cold to a hot reservoir in a nanomechanical system. The model consists of a one-dimensional chain of masses and springs coupled to a back gate through which a time-dependent perturbation is applied. The action of the gate creates a moving phononic barrier by locally pinning a mass. We solve the problem numerically using a nonequilibrium Green's function technique. For low driving frequencies and for sharp traveling barriers, we show that this microscopic model realizes a phonon refrigerator. © 2012 American Physical Society.
publishDate 2012
dc.date.none.fl_str_mv 2012-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/56143
Arrachea, Liliana del Carmen; Mucciolo, Eduardo R.; Chamon, Claudio; Capaz, Rodrigo B.; Microscopic model of a phononic refrigerator; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 86; 12; 9-2012; 125424-125436
1098-0121
CONICET Digital
CONICET
url http://hdl.handle.net/11336/56143
identifier_str_mv Arrachea, Liliana del Carmen; Mucciolo, Eduardo R.; Chamon, Claudio; Capaz, Rodrigo B.; Microscopic model of a phononic refrigerator; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 86; 12; 9-2012; 125424-125436
1098-0121
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.86.125424
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613247286640640
score 13.070432