Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use
- Autores
- Rattalino Edreira, Juan Ignacio; Otegui, Maria Elena
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Maize (Zea mays L.) hybrids with tropical genetic background are a promising source of heat stress tolerance, but their performance in high yielding environments remains poorly understood. Our objective was to assess (i) genotypic differences in the ecophysiological determinants of grain yield; i.e., fraction of light intercepted by crop (fIPAR), radiation use efficiency for biomass production (RUE), and harvest index (HI), and (ii) the responses of mentioned traits to brief episodes of high temperature. The contribution of stored reserves to grain yield was also analyzed. Field experiments included three contrasting maize hybrids (Te: temperate; Tr: tropical; TeTr: Te×Tr) grown under two temperature regimes (control and heated) during daytime hours. We tested heating (ca. 33-40°C at ear level) along three 15-d periods (GS 1: pre-silking; GS 2: from silking onwards: GS 3: active grain filling). Heat stress had no effect on leaf area and fIPAR, but heating during grain filling affected light capture through reduced cycle duration, especially for the Te hybrid (average of -16.5 d). Heating caused a large reduction in RUE, but this trait had a rapid recovery after heat removal and final shoot biomass was not much affected (between -3% and -33%). HI was markedly reduced by heating and its variation was associated with changes in reserves use (r 2=0.61). Grain yield in heated plots was better explained (r 2≥0.92) by the variation in HI than by the variation in final shoot biomass (r 2≥0.59). Heat effects on grain yield were larger (i) when they occurred around flowering (-527gm -2 for GS 1 and -545gm -2 for GS 2) than during grain filling (-352gm -2 for GS 3), and (ii) for the Te hybrid (-599gm -2) than for the TeTr (-440gm -2) and the Tr hybrids (-384gm -2). Heating around silking (GS 1 and GS 2) caused apparent accumulation of reserves during the effective grain-filling period. The opposite trend was detected among plots heated during active grain formation (GS 3). The tropical genetic background did not penalize yield potential and conferred an enhanced capacity for enduring heat effects. © 2012 Elsevier B.V.
Fil: Rattalino Edreira, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Otegui, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina - Materia
-
Biomass Production
Grain Yield
Heat Effects
Hybrids
Maize
Zea Mays L. - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60713
Ver los metadatos del registro completo
id |
CONICETDig_24eb45ad29bfeb84ee66e79aa9322808 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60713 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves useRattalino Edreira, Juan IgnacioOtegui, Maria ElenaBiomass ProductionGrain YieldHeat EffectsHybridsMaizeZea Mays L.https://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Maize (Zea mays L.) hybrids with tropical genetic background are a promising source of heat stress tolerance, but their performance in high yielding environments remains poorly understood. Our objective was to assess (i) genotypic differences in the ecophysiological determinants of grain yield; i.e., fraction of light intercepted by crop (fIPAR), radiation use efficiency for biomass production (RUE), and harvest index (HI), and (ii) the responses of mentioned traits to brief episodes of high temperature. The contribution of stored reserves to grain yield was also analyzed. Field experiments included three contrasting maize hybrids (Te: temperate; Tr: tropical; TeTr: Te×Tr) grown under two temperature regimes (control and heated) during daytime hours. We tested heating (ca. 33-40°C at ear level) along three 15-d periods (GS 1: pre-silking; GS 2: from silking onwards: GS 3: active grain filling). Heat stress had no effect on leaf area and fIPAR, but heating during grain filling affected light capture through reduced cycle duration, especially for the Te hybrid (average of -16.5 d). Heating caused a large reduction in RUE, but this trait had a rapid recovery after heat removal and final shoot biomass was not much affected (between -3% and -33%). HI was markedly reduced by heating and its variation was associated with changes in reserves use (r 2=0.61). Grain yield in heated plots was better explained (r 2≥0.92) by the variation in HI than by the variation in final shoot biomass (r 2≥0.59). Heat effects on grain yield were larger (i) when they occurred around flowering (-527gm -2 for GS 1 and -545gm -2 for GS 2) than during grain filling (-352gm -2 for GS 3), and (ii) for the Te hybrid (-599gm -2) than for the TeTr (-440gm -2) and the Tr hybrids (-384gm -2). Heating around silking (GS 1 and GS 2) caused apparent accumulation of reserves during the effective grain-filling period. The opposite trend was detected among plots heated during active grain formation (GS 3). The tropical genetic background did not penalize yield potential and conferred an enhanced capacity for enduring heat effects. © 2012 Elsevier B.V.Fil: Rattalino Edreira, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Otegui, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaElsevier Science2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60713Rattalino Edreira, Juan Ignacio; Otegui, Maria Elena; Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use; Elsevier Science; Field Crops Research; 130; 3-2012; 87-980378-4290CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.fcr.2012.02.009info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378429012000433info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:17Zoai:ri.conicet.gov.ar:11336/60713instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:17.574CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use |
title |
Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use |
spellingShingle |
Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use Rattalino Edreira, Juan Ignacio Biomass Production Grain Yield Heat Effects Hybrids Maize Zea Mays L. |
title_short |
Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use |
title_full |
Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use |
title_fullStr |
Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use |
title_full_unstemmed |
Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use |
title_sort |
Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use |
dc.creator.none.fl_str_mv |
Rattalino Edreira, Juan Ignacio Otegui, Maria Elena |
author |
Rattalino Edreira, Juan Ignacio |
author_facet |
Rattalino Edreira, Juan Ignacio Otegui, Maria Elena |
author_role |
author |
author2 |
Otegui, Maria Elena |
author2_role |
author |
dc.subject.none.fl_str_mv |
Biomass Production Grain Yield Heat Effects Hybrids Maize Zea Mays L. |
topic |
Biomass Production Grain Yield Heat Effects Hybrids Maize Zea Mays L. |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Maize (Zea mays L.) hybrids with tropical genetic background are a promising source of heat stress tolerance, but their performance in high yielding environments remains poorly understood. Our objective was to assess (i) genotypic differences in the ecophysiological determinants of grain yield; i.e., fraction of light intercepted by crop (fIPAR), radiation use efficiency for biomass production (RUE), and harvest index (HI), and (ii) the responses of mentioned traits to brief episodes of high temperature. The contribution of stored reserves to grain yield was also analyzed. Field experiments included three contrasting maize hybrids (Te: temperate; Tr: tropical; TeTr: Te×Tr) grown under two temperature regimes (control and heated) during daytime hours. We tested heating (ca. 33-40°C at ear level) along three 15-d periods (GS 1: pre-silking; GS 2: from silking onwards: GS 3: active grain filling). Heat stress had no effect on leaf area and fIPAR, but heating during grain filling affected light capture through reduced cycle duration, especially for the Te hybrid (average of -16.5 d). Heating caused a large reduction in RUE, but this trait had a rapid recovery after heat removal and final shoot biomass was not much affected (between -3% and -33%). HI was markedly reduced by heating and its variation was associated with changes in reserves use (r 2=0.61). Grain yield in heated plots was better explained (r 2≥0.92) by the variation in HI than by the variation in final shoot biomass (r 2≥0.59). Heat effects on grain yield were larger (i) when they occurred around flowering (-527gm -2 for GS 1 and -545gm -2 for GS 2) than during grain filling (-352gm -2 for GS 3), and (ii) for the Te hybrid (-599gm -2) than for the TeTr (-440gm -2) and the Tr hybrids (-384gm -2). Heating around silking (GS 1 and GS 2) caused apparent accumulation of reserves during the effective grain-filling period. The opposite trend was detected among plots heated during active grain formation (GS 3). The tropical genetic background did not penalize yield potential and conferred an enhanced capacity for enduring heat effects. © 2012 Elsevier B.V. Fil: Rattalino Edreira, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina Fil: Otegui, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina |
description |
Maize (Zea mays L.) hybrids with tropical genetic background are a promising source of heat stress tolerance, but their performance in high yielding environments remains poorly understood. Our objective was to assess (i) genotypic differences in the ecophysiological determinants of grain yield; i.e., fraction of light intercepted by crop (fIPAR), radiation use efficiency for biomass production (RUE), and harvest index (HI), and (ii) the responses of mentioned traits to brief episodes of high temperature. The contribution of stored reserves to grain yield was also analyzed. Field experiments included three contrasting maize hybrids (Te: temperate; Tr: tropical; TeTr: Te×Tr) grown under two temperature regimes (control and heated) during daytime hours. We tested heating (ca. 33-40°C at ear level) along three 15-d periods (GS 1: pre-silking; GS 2: from silking onwards: GS 3: active grain filling). Heat stress had no effect on leaf area and fIPAR, but heating during grain filling affected light capture through reduced cycle duration, especially for the Te hybrid (average of -16.5 d). Heating caused a large reduction in RUE, but this trait had a rapid recovery after heat removal and final shoot biomass was not much affected (between -3% and -33%). HI was markedly reduced by heating and its variation was associated with changes in reserves use (r 2=0.61). Grain yield in heated plots was better explained (r 2≥0.92) by the variation in HI than by the variation in final shoot biomass (r 2≥0.59). Heat effects on grain yield were larger (i) when they occurred around flowering (-527gm -2 for GS 1 and -545gm -2 for GS 2) than during grain filling (-352gm -2 for GS 3), and (ii) for the Te hybrid (-599gm -2) than for the TeTr (-440gm -2) and the Tr hybrids (-384gm -2). Heating around silking (GS 1 and GS 2) caused apparent accumulation of reserves during the effective grain-filling period. The opposite trend was detected among plots heated during active grain formation (GS 3). The tropical genetic background did not penalize yield potential and conferred an enhanced capacity for enduring heat effects. © 2012 Elsevier B.V. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60713 Rattalino Edreira, Juan Ignacio; Otegui, Maria Elena; Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use; Elsevier Science; Field Crops Research; 130; 3-2012; 87-98 0378-4290 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60713 |
identifier_str_mv |
Rattalino Edreira, Juan Ignacio; Otegui, Maria Elena; Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use; Elsevier Science; Field Crops Research; 130; 3-2012; 87-98 0378-4290 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fcr.2012.02.009 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378429012000433 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614503880196096 |
score |
13.070432 |