Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach
- Autores
- Castin, Nicolas; Pascuet, Maria Ines Magdalena; Malerba, L.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We simulate the coherent stage of Cu precipitation in alpha-Fe with an atomistic kinetic Monte Carlo (AKMC) model. The vacancy migration energy as a function of the local chemical environment is provided on-the-fly by a neural network, trained with high precision on values calculated with the nudged elastic band method, using a suitable interatomic potential. To speed up the simulation, however, we modify the standard AKMC algorithm by treating large Cu clusters as objects, similarly to object kinetic Monte Carlo approaches. Seamless matching between the fully atomistic and the coarse-grained approach is achieved again by using a neural network, that provides all stability and mobility parameters for large Cu clusters, after training on atomistically informed results. The resulting hybrid algorithm allows long thermal annealing experiments to be simulated, within a reasonable CPU time. The results obtained are in very good agreement with several series of experimental data available from the literature, spanning over different conditions of temperature and alloy composition. We deduce from these results and relevant parametric studies that the mobility of Cu clusters containing one vacancy plays a central role in the precipitation mechanism.
Fil: Castin, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Université Libre de Bruxelles; Bélgica
Fil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Malerba, L.. No especifíca; - Materia
-
Fe-Cu
Precipitation
Hybrid atomistic kinetic Monte Carlo
Artificial Intelligence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/236686
Ver los metadatos del registro completo
id |
CONICETDig_24123de39d58b5c4930acdf78b368c36 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/236686 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approachCastin, NicolasPascuet, Maria Ines MagdalenaMalerba, L.Fe-CuPrecipitationHybrid atomistic kinetic Monte CarloArtificial Intelligencehttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2We simulate the coherent stage of Cu precipitation in alpha-Fe with an atomistic kinetic Monte Carlo (AKMC) model. The vacancy migration energy as a function of the local chemical environment is provided on-the-fly by a neural network, trained with high precision on values calculated with the nudged elastic band method, using a suitable interatomic potential. To speed up the simulation, however, we modify the standard AKMC algorithm by treating large Cu clusters as objects, similarly to object kinetic Monte Carlo approaches. Seamless matching between the fully atomistic and the coarse-grained approach is achieved again by using a neural network, that provides all stability and mobility parameters for large Cu clusters, after training on atomistically informed results. The resulting hybrid algorithm allows long thermal annealing experiments to be simulated, within a reasonable CPU time. The results obtained are in very good agreement with several series of experimental data available from the literature, spanning over different conditions of temperature and alloy composition. We deduce from these results and relevant parametric studies that the mobility of Cu clusters containing one vacancy plays a central role in the precipitation mechanism.Fil: Castin, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Université Libre de Bruxelles; BélgicaFil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Malerba, L.. No especifíca;American Institute of Physics2011-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/236686Castin, Nicolas; Pascuet, Maria Ines Magdalena; Malerba, L. ; Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach; American Institute of Physics; Journal of Chemical Physics; 135; 6; 8-2011; 1-90021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.3622045info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:38Zoai:ri.conicet.gov.ar:11336/236686instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:39.204CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach |
title |
Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach |
spellingShingle |
Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach Castin, Nicolas Fe-Cu Precipitation Hybrid atomistic kinetic Monte Carlo Artificial Intelligence |
title_short |
Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach |
title_full |
Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach |
title_fullStr |
Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach |
title_full_unstemmed |
Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach |
title_sort |
Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach |
dc.creator.none.fl_str_mv |
Castin, Nicolas Pascuet, Maria Ines Magdalena Malerba, L. |
author |
Castin, Nicolas |
author_facet |
Castin, Nicolas Pascuet, Maria Ines Magdalena Malerba, L. |
author_role |
author |
author2 |
Pascuet, Maria Ines Magdalena Malerba, L. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Fe-Cu Precipitation Hybrid atomistic kinetic Monte Carlo Artificial Intelligence |
topic |
Fe-Cu Precipitation Hybrid atomistic kinetic Monte Carlo Artificial Intelligence |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
We simulate the coherent stage of Cu precipitation in alpha-Fe with an atomistic kinetic Monte Carlo (AKMC) model. The vacancy migration energy as a function of the local chemical environment is provided on-the-fly by a neural network, trained with high precision on values calculated with the nudged elastic band method, using a suitable interatomic potential. To speed up the simulation, however, we modify the standard AKMC algorithm by treating large Cu clusters as objects, similarly to object kinetic Monte Carlo approaches. Seamless matching between the fully atomistic and the coarse-grained approach is achieved again by using a neural network, that provides all stability and mobility parameters for large Cu clusters, after training on atomistically informed results. The resulting hybrid algorithm allows long thermal annealing experiments to be simulated, within a reasonable CPU time. The results obtained are in very good agreement with several series of experimental data available from the literature, spanning over different conditions of temperature and alloy composition. We deduce from these results and relevant parametric studies that the mobility of Cu clusters containing one vacancy plays a central role in the precipitation mechanism. Fil: Castin, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Université Libre de Bruxelles; Bélgica Fil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Malerba, L.. No especifíca; |
description |
We simulate the coherent stage of Cu precipitation in alpha-Fe with an atomistic kinetic Monte Carlo (AKMC) model. The vacancy migration energy as a function of the local chemical environment is provided on-the-fly by a neural network, trained with high precision on values calculated with the nudged elastic band method, using a suitable interatomic potential. To speed up the simulation, however, we modify the standard AKMC algorithm by treating large Cu clusters as objects, similarly to object kinetic Monte Carlo approaches. Seamless matching between the fully atomistic and the coarse-grained approach is achieved again by using a neural network, that provides all stability and mobility parameters for large Cu clusters, after training on atomistically informed results. The resulting hybrid algorithm allows long thermal annealing experiments to be simulated, within a reasonable CPU time. The results obtained are in very good agreement with several series of experimental data available from the literature, spanning over different conditions of temperature and alloy composition. We deduce from these results and relevant parametric studies that the mobility of Cu clusters containing one vacancy plays a central role in the precipitation mechanism. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/236686 Castin, Nicolas; Pascuet, Maria Ines Magdalena; Malerba, L. ; Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach; American Institute of Physics; Journal of Chemical Physics; 135; 6; 8-2011; 1-9 0021-9606 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/236686 |
identifier_str_mv |
Castin, Nicolas; Pascuet, Maria Ines Magdalena; Malerba, L. ; Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach; American Institute of Physics; Journal of Chemical Physics; 135; 6; 8-2011; 1-9 0021-9606 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3622045 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614397300834304 |
score |
13.070432 |