Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach

Autores
Castin, Nicolas; Pascuet, Maria Ines Magdalena; Malerba, L.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We simulate the coherent stage of Cu precipitation in alpha-Fe with an atomistic kinetic Monte Carlo (AKMC) model. The vacancy migration energy as a function of the local chemical environment is provided on-the-fly by a neural network, trained with high precision on values calculated with the nudged elastic band method, using a suitable interatomic potential. To speed up the simulation, however, we modify the standard AKMC algorithm by treating large Cu clusters as objects, similarly to object kinetic Monte Carlo approaches. Seamless matching between the fully atomistic and the coarse-grained approach is achieved again by using a neural network, that provides all stability and mobility parameters for large Cu clusters, after training on atomistically informed results. The resulting hybrid algorithm allows long thermal annealing experiments to be simulated, within a reasonable CPU time. The results obtained are in very good agreement with several series of experimental data available from the literature, spanning over different conditions of temperature and alloy composition. We deduce from these results and relevant parametric studies that the mobility of Cu clusters containing one vacancy plays a central role in the precipitation mechanism.
Fil: Castin, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Université Libre de Bruxelles; Bélgica
Fil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Malerba, L.. No especifíca;
Materia
Fe-Cu
Precipitation
Hybrid atomistic kinetic Monte Carlo
Artificial Intelligence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/236686

id CONICETDig_24123de39d58b5c4930acdf78b368c36
oai_identifier_str oai:ri.conicet.gov.ar:11336/236686
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approachCastin, NicolasPascuet, Maria Ines MagdalenaMalerba, L.Fe-CuPrecipitationHybrid atomistic kinetic Monte CarloArtificial Intelligencehttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2We simulate the coherent stage of Cu precipitation in alpha-Fe with an atomistic kinetic Monte Carlo (AKMC) model. The vacancy migration energy as a function of the local chemical environment is provided on-the-fly by a neural network, trained with high precision on values calculated with the nudged elastic band method, using a suitable interatomic potential. To speed up the simulation, however, we modify the standard AKMC algorithm by treating large Cu clusters as objects, similarly to object kinetic Monte Carlo approaches. Seamless matching between the fully atomistic and the coarse-grained approach is achieved again by using a neural network, that provides all stability and mobility parameters for large Cu clusters, after training on atomistically informed results. The resulting hybrid algorithm allows long thermal annealing experiments to be simulated, within a reasonable CPU time. The results obtained are in very good agreement with several series of experimental data available from the literature, spanning over different conditions of temperature and alloy composition. We deduce from these results and relevant parametric studies that the mobility of Cu clusters containing one vacancy plays a central role in the precipitation mechanism.Fil: Castin, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Université Libre de Bruxelles; BélgicaFil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Malerba, L.. No especifíca;American Institute of Physics2011-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/236686Castin, Nicolas; Pascuet, Maria Ines Magdalena; Malerba, L. ; Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach; American Institute of Physics; Journal of Chemical Physics; 135; 6; 8-2011; 1-90021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.3622045info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:38Zoai:ri.conicet.gov.ar:11336/236686instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:39.204CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach
title Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach
spellingShingle Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach
Castin, Nicolas
Fe-Cu
Precipitation
Hybrid atomistic kinetic Monte Carlo
Artificial Intelligence
title_short Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach
title_full Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach
title_fullStr Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach
title_full_unstemmed Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach
title_sort Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach
dc.creator.none.fl_str_mv Castin, Nicolas
Pascuet, Maria Ines Magdalena
Malerba, L.
author Castin, Nicolas
author_facet Castin, Nicolas
Pascuet, Maria Ines Magdalena
Malerba, L.
author_role author
author2 Pascuet, Maria Ines Magdalena
Malerba, L.
author2_role author
author
dc.subject.none.fl_str_mv Fe-Cu
Precipitation
Hybrid atomistic kinetic Monte Carlo
Artificial Intelligence
topic Fe-Cu
Precipitation
Hybrid atomistic kinetic Monte Carlo
Artificial Intelligence
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv We simulate the coherent stage of Cu precipitation in alpha-Fe with an atomistic kinetic Monte Carlo (AKMC) model. The vacancy migration energy as a function of the local chemical environment is provided on-the-fly by a neural network, trained with high precision on values calculated with the nudged elastic band method, using a suitable interatomic potential. To speed up the simulation, however, we modify the standard AKMC algorithm by treating large Cu clusters as objects, similarly to object kinetic Monte Carlo approaches. Seamless matching between the fully atomistic and the coarse-grained approach is achieved again by using a neural network, that provides all stability and mobility parameters for large Cu clusters, after training on atomistically informed results. The resulting hybrid algorithm allows long thermal annealing experiments to be simulated, within a reasonable CPU time. The results obtained are in very good agreement with several series of experimental data available from the literature, spanning over different conditions of temperature and alloy composition. We deduce from these results and relevant parametric studies that the mobility of Cu clusters containing one vacancy plays a central role in the precipitation mechanism.
Fil: Castin, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Université Libre de Bruxelles; Bélgica
Fil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Malerba, L.. No especifíca;
description We simulate the coherent stage of Cu precipitation in alpha-Fe with an atomistic kinetic Monte Carlo (AKMC) model. The vacancy migration energy as a function of the local chemical environment is provided on-the-fly by a neural network, trained with high precision on values calculated with the nudged elastic band method, using a suitable interatomic potential. To speed up the simulation, however, we modify the standard AKMC algorithm by treating large Cu clusters as objects, similarly to object kinetic Monte Carlo approaches. Seamless matching between the fully atomistic and the coarse-grained approach is achieved again by using a neural network, that provides all stability and mobility parameters for large Cu clusters, after training on atomistically informed results. The resulting hybrid algorithm allows long thermal annealing experiments to be simulated, within a reasonable CPU time. The results obtained are in very good agreement with several series of experimental data available from the literature, spanning over different conditions of temperature and alloy composition. We deduce from these results and relevant parametric studies that the mobility of Cu clusters containing one vacancy plays a central role in the precipitation mechanism.
publishDate 2011
dc.date.none.fl_str_mv 2011-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/236686
Castin, Nicolas; Pascuet, Maria Ines Magdalena; Malerba, L. ; Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach; American Institute of Physics; Journal of Chemical Physics; 135; 6; 8-2011; 1-9
0021-9606
CONICET Digital
CONICET
url http://hdl.handle.net/11336/236686
identifier_str_mv Castin, Nicolas; Pascuet, Maria Ines Magdalena; Malerba, L. ; Modeling the first stages of Cu precipitation in alpha-Fe using an hybrid atomistic kinetic Monte Carlo approach; American Institute of Physics; Journal of Chemical Physics; 135; 6; 8-2011; 1-9
0021-9606
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3622045
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614397300834304
score 13.070432