Pentyl valerate biofuel from γ-valerolactone in one-pot process: Insights on the key role of acid sites of the catalytic support

Autores
Martínez Figueredo, Karla Geraldine; Segobia, Dario Jobino; Bertero, Nicolas Maximiliano
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work the acid-catalysed reactions involved in the one-pot production of pentyl valerate (PV) from γ-valerolactone (GVL) and pentanol in liquid phase at 523 K, 10 bar of N2 over acidic catalysts was studied. Two consecutive acid-catalysed reactions must be performed: (1) nucleophilic addition of pentanol (PL) to GVL to form 4-hydroxy pentyl valerate (HPV) and (2) HPV dehydration into pentyl 2-pentenoate (PP), avoiding the undesirable formation of 4-pentoxy pentyl valerate (PPV). It was found that the support activity and selectivity strongly depended on: (i) the nature; (ii) strength; (iii) density of acid sites and (iv) the textural properties of the acid support. Solids containing predominantly Lewis acid sites, such as ZnO/SiO2, γ-Al2O3 and NaY zeolite promote mainly a strong GVL adsorption leading to a relatively high missing carbon balance. Catalysts having mainly surface Brønsted acid sites of medium–high strength, such as HPA/SiO2, showed a very high activity and selectivity to PP but deactivated dramatically. Zeolites containing at least 40% of Brønsted acidity and strong acid sites promoted remarkably the undesirable intramolecular dehydration of pentanol into pentenes. SiO2-Al2O3, exhibiting a B/(L + B) ratio of 0.21 and a wide strength of acid sites, was more selective to PP than to PPV though the missing carbon balance was high. By calorimetric adsorption and temperature-programmed oxidation adsorption enthalpies of 61.9 and 59.1 Kcal/mol for GVL and PL were obtained, respectively. Besides, by temperature-programmed desorption experiments it was determined that GVL adsorption is irreversible on SiO2-Al2O3, whereas in the case of PL is partially reversible. The effect of the calcination temperature on the product distribution and evolution of the missing carbon balance was also studied over SiO2-Al2O3. These results contribute to the future design of more efficient bifunctional catalytic systems for biofuel production.
Fil: Martínez Figueredo, Karla Geraldine. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Segobia, Dario Jobino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Bertero, Nicolas Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Materia
ACID REQUIREMENTS
BIOFUEL
BRØNSTED/LEWIS
ONE-POT
PENTYL VALERATE
Γ-VALEROLACTONE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/210613

id CONICETDig_23fcaf15ae597b2b0739151626522f77
oai_identifier_str oai:ri.conicet.gov.ar:11336/210613
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Pentyl valerate biofuel from γ-valerolactone in one-pot process: Insights on the key role of acid sites of the catalytic supportMartínez Figueredo, Karla GeraldineSegobia, Dario JobinoBertero, Nicolas MaximilianoACID REQUIREMENTSBIOFUELBRØNSTED/LEWISONE-POTPENTYL VALERATEΓ-VALEROLACTONEhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In this work the acid-catalysed reactions involved in the one-pot production of pentyl valerate (PV) from γ-valerolactone (GVL) and pentanol in liquid phase at 523 K, 10 bar of N2 over acidic catalysts was studied. Two consecutive acid-catalysed reactions must be performed: (1) nucleophilic addition of pentanol (PL) to GVL to form 4-hydroxy pentyl valerate (HPV) and (2) HPV dehydration into pentyl 2-pentenoate (PP), avoiding the undesirable formation of 4-pentoxy pentyl valerate (PPV). It was found that the support activity and selectivity strongly depended on: (i) the nature; (ii) strength; (iii) density of acid sites and (iv) the textural properties of the acid support. Solids containing predominantly Lewis acid sites, such as ZnO/SiO2, γ-Al2O3 and NaY zeolite promote mainly a strong GVL adsorption leading to a relatively high missing carbon balance. Catalysts having mainly surface Brønsted acid sites of medium–high strength, such as HPA/SiO2, showed a very high activity and selectivity to PP but deactivated dramatically. Zeolites containing at least 40% of Brønsted acidity and strong acid sites promoted remarkably the undesirable intramolecular dehydration of pentanol into pentenes. SiO2-Al2O3, exhibiting a B/(L + B) ratio of 0.21 and a wide strength of acid sites, was more selective to PP than to PPV though the missing carbon balance was high. By calorimetric adsorption and temperature-programmed oxidation adsorption enthalpies of 61.9 and 59.1 Kcal/mol for GVL and PL were obtained, respectively. Besides, by temperature-programmed desorption experiments it was determined that GVL adsorption is irreversible on SiO2-Al2O3, whereas in the case of PL is partially reversible. The effect of the calcination temperature on the product distribution and evolution of the missing carbon balance was also studied over SiO2-Al2O3. These results contribute to the future design of more efficient bifunctional catalytic systems for biofuel production.Fil: Martínez Figueredo, Karla Geraldine. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Segobia, Dario Jobino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Bertero, Nicolas Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaElsevier2022-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210613Martínez Figueredo, Karla Geraldine; Segobia, Dario Jobino; Bertero, Nicolas Maximiliano; Pentyl valerate biofuel from γ-valerolactone in one-pot process: Insights on the key role of acid sites of the catalytic support; Elsevier; Energy Conversion and Management: X; 13; 1-2022; 100162-1001742590-1745CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecmx.2021.100162info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:15Zoai:ri.conicet.gov.ar:11336/210613instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:15.476CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Pentyl valerate biofuel from γ-valerolactone in one-pot process: Insights on the key role of acid sites of the catalytic support
title Pentyl valerate biofuel from γ-valerolactone in one-pot process: Insights on the key role of acid sites of the catalytic support
spellingShingle Pentyl valerate biofuel from γ-valerolactone in one-pot process: Insights on the key role of acid sites of the catalytic support
Martínez Figueredo, Karla Geraldine
ACID REQUIREMENTS
BIOFUEL
BRØNSTED/LEWIS
ONE-POT
PENTYL VALERATE
Γ-VALEROLACTONE
title_short Pentyl valerate biofuel from γ-valerolactone in one-pot process: Insights on the key role of acid sites of the catalytic support
title_full Pentyl valerate biofuel from γ-valerolactone in one-pot process: Insights on the key role of acid sites of the catalytic support
title_fullStr Pentyl valerate biofuel from γ-valerolactone in one-pot process: Insights on the key role of acid sites of the catalytic support
title_full_unstemmed Pentyl valerate biofuel from γ-valerolactone in one-pot process: Insights on the key role of acid sites of the catalytic support
title_sort Pentyl valerate biofuel from γ-valerolactone in one-pot process: Insights on the key role of acid sites of the catalytic support
dc.creator.none.fl_str_mv Martínez Figueredo, Karla Geraldine
Segobia, Dario Jobino
Bertero, Nicolas Maximiliano
author Martínez Figueredo, Karla Geraldine
author_facet Martínez Figueredo, Karla Geraldine
Segobia, Dario Jobino
Bertero, Nicolas Maximiliano
author_role author
author2 Segobia, Dario Jobino
Bertero, Nicolas Maximiliano
author2_role author
author
dc.subject.none.fl_str_mv ACID REQUIREMENTS
BIOFUEL
BRØNSTED/LEWIS
ONE-POT
PENTYL VALERATE
Γ-VALEROLACTONE
topic ACID REQUIREMENTS
BIOFUEL
BRØNSTED/LEWIS
ONE-POT
PENTYL VALERATE
Γ-VALEROLACTONE
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this work the acid-catalysed reactions involved in the one-pot production of pentyl valerate (PV) from γ-valerolactone (GVL) and pentanol in liquid phase at 523 K, 10 bar of N2 over acidic catalysts was studied. Two consecutive acid-catalysed reactions must be performed: (1) nucleophilic addition of pentanol (PL) to GVL to form 4-hydroxy pentyl valerate (HPV) and (2) HPV dehydration into pentyl 2-pentenoate (PP), avoiding the undesirable formation of 4-pentoxy pentyl valerate (PPV). It was found that the support activity and selectivity strongly depended on: (i) the nature; (ii) strength; (iii) density of acid sites and (iv) the textural properties of the acid support. Solids containing predominantly Lewis acid sites, such as ZnO/SiO2, γ-Al2O3 and NaY zeolite promote mainly a strong GVL adsorption leading to a relatively high missing carbon balance. Catalysts having mainly surface Brønsted acid sites of medium–high strength, such as HPA/SiO2, showed a very high activity and selectivity to PP but deactivated dramatically. Zeolites containing at least 40% of Brønsted acidity and strong acid sites promoted remarkably the undesirable intramolecular dehydration of pentanol into pentenes. SiO2-Al2O3, exhibiting a B/(L + B) ratio of 0.21 and a wide strength of acid sites, was more selective to PP than to PPV though the missing carbon balance was high. By calorimetric adsorption and temperature-programmed oxidation adsorption enthalpies of 61.9 and 59.1 Kcal/mol for GVL and PL were obtained, respectively. Besides, by temperature-programmed desorption experiments it was determined that GVL adsorption is irreversible on SiO2-Al2O3, whereas in the case of PL is partially reversible. The effect of the calcination temperature on the product distribution and evolution of the missing carbon balance was also studied over SiO2-Al2O3. These results contribute to the future design of more efficient bifunctional catalytic systems for biofuel production.
Fil: Martínez Figueredo, Karla Geraldine. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Segobia, Dario Jobino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Bertero, Nicolas Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
description In this work the acid-catalysed reactions involved in the one-pot production of pentyl valerate (PV) from γ-valerolactone (GVL) and pentanol in liquid phase at 523 K, 10 bar of N2 over acidic catalysts was studied. Two consecutive acid-catalysed reactions must be performed: (1) nucleophilic addition of pentanol (PL) to GVL to form 4-hydroxy pentyl valerate (HPV) and (2) HPV dehydration into pentyl 2-pentenoate (PP), avoiding the undesirable formation of 4-pentoxy pentyl valerate (PPV). It was found that the support activity and selectivity strongly depended on: (i) the nature; (ii) strength; (iii) density of acid sites and (iv) the textural properties of the acid support. Solids containing predominantly Lewis acid sites, such as ZnO/SiO2, γ-Al2O3 and NaY zeolite promote mainly a strong GVL adsorption leading to a relatively high missing carbon balance. Catalysts having mainly surface Brønsted acid sites of medium–high strength, such as HPA/SiO2, showed a very high activity and selectivity to PP but deactivated dramatically. Zeolites containing at least 40% of Brønsted acidity and strong acid sites promoted remarkably the undesirable intramolecular dehydration of pentanol into pentenes. SiO2-Al2O3, exhibiting a B/(L + B) ratio of 0.21 and a wide strength of acid sites, was more selective to PP than to PPV though the missing carbon balance was high. By calorimetric adsorption and temperature-programmed oxidation adsorption enthalpies of 61.9 and 59.1 Kcal/mol for GVL and PL were obtained, respectively. Besides, by temperature-programmed desorption experiments it was determined that GVL adsorption is irreversible on SiO2-Al2O3, whereas in the case of PL is partially reversible. The effect of the calcination temperature on the product distribution and evolution of the missing carbon balance was also studied over SiO2-Al2O3. These results contribute to the future design of more efficient bifunctional catalytic systems for biofuel production.
publishDate 2022
dc.date.none.fl_str_mv 2022-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/210613
Martínez Figueredo, Karla Geraldine; Segobia, Dario Jobino; Bertero, Nicolas Maximiliano; Pentyl valerate biofuel from γ-valerolactone in one-pot process: Insights on the key role of acid sites of the catalytic support; Elsevier; Energy Conversion and Management: X; 13; 1-2022; 100162-100174
2590-1745
CONICET Digital
CONICET
url http://hdl.handle.net/11336/210613
identifier_str_mv Martínez Figueredo, Karla Geraldine; Segobia, Dario Jobino; Bertero, Nicolas Maximiliano; Pentyl valerate biofuel from γ-valerolactone in one-pot process: Insights on the key role of acid sites of the catalytic support; Elsevier; Energy Conversion and Management: X; 13; 1-2022; 100162-100174
2590-1745
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecmx.2021.100162
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614027648434176
score 13.070432