Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment
- Autores
- Soager, Nina; Holm, Paul Martin; Llambias, Eduardo Jorge
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Pleistocene to Holocene Payenia volcanic province is a backarc region of 60,000 km2 in Mendoza, Argentina, which is dominated by transitional to alkaline basalts and trachybasalts. We present major and trace element compositions of 139 rocks from this area of which the majority are basaltic rocks with 4 to 12 wt.% MgO and 44 to 50 wt.% SiO2. The southern Payenia province is dominated by intraplate basalts and the trace element patterns of the Río Colorado and Payún Matrú lavas suggest little or no influence from subducted slab components. The mantle source of these rocks is similar to some EM-1 ocean island basalts. In contrast, the magmas from the northern Payenia province and the Andean retroarc occurrences have received an important input from the subducting slab and their trace element patterns are transitional between intraplate and arc rocks. These magmas are mainly derived from another asthenospheric mantle source which may be similar to normal MORB mantle. The Nevado and Northern Segment basalts have presumably been formed above a shallowly subducting slab and the progression of volcanism from south to north and northwest along the San Rafael block likely marks the downwarping of the slab and the end of the shallow subduction period. The downwarping slab may have generated an enhanced mantle upwelling of both the intraplate and the MORB-like mantle sources. In samples from almost all parts of the Payenia province and in particular many Nevado, Llancanelo and older Payún Matrú basalts, trace element variations suggest a significant contribution from lower crustal melts, possibly up to 70% in the most extreme cases. The contaminating lower crustal rocks must have been depleted mafic rocks with a plagioclase component. The extensive melting of lower crust is probably related to the low thickness of the lithospheric mantle and preheating of the lower crust by earlier Mio-Pliocene volcanism. Rare earth element modelling of mantle melting calls for enriched source compositions and a beginning of melting within the garnet stability field for all Payenia basalts. The Río Colorado and Payún Matrú basalts indicate high solidus pressures around 3–3.1 GPa which requires either a thermal or compositional mantle anomaly. The model suggests a thinner lithosphere in the western Payenia region compared to the eastern.
Fil: Soager, Nina. Universidad de Copenhagen; Dinamarca
Fil: Holm, Paul Martin. Universidad de Copenhagen; Dinamarca
Fil: Llambias, Eduardo Jorge. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Intraplate Basalts
Backarc Volcanism
Shallow Subduction
Crustal Contamination - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/24368
Ver los metadatos del registro completo
id |
CONICETDig_23cbb21d05704ed9bf9462af0f456ec9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/24368 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environmentSoager, NinaHolm, Paul MartinLlambias, Eduardo JorgeIntraplate BasaltsBackarc VolcanismShallow SubductionCrustal Contaminationhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The Pleistocene to Holocene Payenia volcanic province is a backarc region of 60,000 km2 in Mendoza, Argentina, which is dominated by transitional to alkaline basalts and trachybasalts. We present major and trace element compositions of 139 rocks from this area of which the majority are basaltic rocks with 4 to 12 wt.% MgO and 44 to 50 wt.% SiO2. The southern Payenia province is dominated by intraplate basalts and the trace element patterns of the Río Colorado and Payún Matrú lavas suggest little or no influence from subducted slab components. The mantle source of these rocks is similar to some EM-1 ocean island basalts. In contrast, the magmas from the northern Payenia province and the Andean retroarc occurrences have received an important input from the subducting slab and their trace element patterns are transitional between intraplate and arc rocks. These magmas are mainly derived from another asthenospheric mantle source which may be similar to normal MORB mantle. The Nevado and Northern Segment basalts have presumably been formed above a shallowly subducting slab and the progression of volcanism from south to north and northwest along the San Rafael block likely marks the downwarping of the slab and the end of the shallow subduction period. The downwarping slab may have generated an enhanced mantle upwelling of both the intraplate and the MORB-like mantle sources. In samples from almost all parts of the Payenia province and in particular many Nevado, Llancanelo and older Payún Matrú basalts, trace element variations suggest a significant contribution from lower crustal melts, possibly up to 70% in the most extreme cases. The contaminating lower crustal rocks must have been depleted mafic rocks with a plagioclase component. The extensive melting of lower crust is probably related to the low thickness of the lithospheric mantle and preheating of the lower crust by earlier Mio-Pliocene volcanism. Rare earth element modelling of mantle melting calls for enriched source compositions and a beginning of melting within the garnet stability field for all Payenia basalts. The Río Colorado and Payún Matrú basalts indicate high solidus pressures around 3–3.1 GPa which requires either a thermal or compositional mantle anomaly. The model suggests a thinner lithosphere in the western Payenia region compared to the eastern.Fil: Soager, Nina. Universidad de Copenhagen; DinamarcaFil: Holm, Paul Martin. Universidad de Copenhagen; DinamarcaFil: Llambias, Eduardo Jorge. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24368Soager, Nina; Holm, Paul Martin; Llambias, Eduardo Jorge; Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment; Elsevier Science; Chemical Geology; 349-350; 6-2013; 36-530009-2541CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemgeo.2013.04.007info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0009254113001502info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:51Zoai:ri.conicet.gov.ar:11336/24368instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:51.4CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment |
title |
Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment |
spellingShingle |
Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment Soager, Nina Intraplate Basalts Backarc Volcanism Shallow Subduction Crustal Contamination |
title_short |
Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment |
title_full |
Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment |
title_fullStr |
Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment |
title_full_unstemmed |
Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment |
title_sort |
Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment |
dc.creator.none.fl_str_mv |
Soager, Nina Holm, Paul Martin Llambias, Eduardo Jorge |
author |
Soager, Nina |
author_facet |
Soager, Nina Holm, Paul Martin Llambias, Eduardo Jorge |
author_role |
author |
author2 |
Holm, Paul Martin Llambias, Eduardo Jorge |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Intraplate Basalts Backarc Volcanism Shallow Subduction Crustal Contamination |
topic |
Intraplate Basalts Backarc Volcanism Shallow Subduction Crustal Contamination |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Pleistocene to Holocene Payenia volcanic province is a backarc region of 60,000 km2 in Mendoza, Argentina, which is dominated by transitional to alkaline basalts and trachybasalts. We present major and trace element compositions of 139 rocks from this area of which the majority are basaltic rocks with 4 to 12 wt.% MgO and 44 to 50 wt.% SiO2. The southern Payenia province is dominated by intraplate basalts and the trace element patterns of the Río Colorado and Payún Matrú lavas suggest little or no influence from subducted slab components. The mantle source of these rocks is similar to some EM-1 ocean island basalts. In contrast, the magmas from the northern Payenia province and the Andean retroarc occurrences have received an important input from the subducting slab and their trace element patterns are transitional between intraplate and arc rocks. These magmas are mainly derived from another asthenospheric mantle source which may be similar to normal MORB mantle. The Nevado and Northern Segment basalts have presumably been formed above a shallowly subducting slab and the progression of volcanism from south to north and northwest along the San Rafael block likely marks the downwarping of the slab and the end of the shallow subduction period. The downwarping slab may have generated an enhanced mantle upwelling of both the intraplate and the MORB-like mantle sources. In samples from almost all parts of the Payenia province and in particular many Nevado, Llancanelo and older Payún Matrú basalts, trace element variations suggest a significant contribution from lower crustal melts, possibly up to 70% in the most extreme cases. The contaminating lower crustal rocks must have been depleted mafic rocks with a plagioclase component. The extensive melting of lower crust is probably related to the low thickness of the lithospheric mantle and preheating of the lower crust by earlier Mio-Pliocene volcanism. Rare earth element modelling of mantle melting calls for enriched source compositions and a beginning of melting within the garnet stability field for all Payenia basalts. The Río Colorado and Payún Matrú basalts indicate high solidus pressures around 3–3.1 GPa which requires either a thermal or compositional mantle anomaly. The model suggests a thinner lithosphere in the western Payenia region compared to the eastern. Fil: Soager, Nina. Universidad de Copenhagen; Dinamarca Fil: Holm, Paul Martin. Universidad de Copenhagen; Dinamarca Fil: Llambias, Eduardo Jorge. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The Pleistocene to Holocene Payenia volcanic province is a backarc region of 60,000 km2 in Mendoza, Argentina, which is dominated by transitional to alkaline basalts and trachybasalts. We present major and trace element compositions of 139 rocks from this area of which the majority are basaltic rocks with 4 to 12 wt.% MgO and 44 to 50 wt.% SiO2. The southern Payenia province is dominated by intraplate basalts and the trace element patterns of the Río Colorado and Payún Matrú lavas suggest little or no influence from subducted slab components. The mantle source of these rocks is similar to some EM-1 ocean island basalts. In contrast, the magmas from the northern Payenia province and the Andean retroarc occurrences have received an important input from the subducting slab and their trace element patterns are transitional between intraplate and arc rocks. These magmas are mainly derived from another asthenospheric mantle source which may be similar to normal MORB mantle. The Nevado and Northern Segment basalts have presumably been formed above a shallowly subducting slab and the progression of volcanism from south to north and northwest along the San Rafael block likely marks the downwarping of the slab and the end of the shallow subduction period. The downwarping slab may have generated an enhanced mantle upwelling of both the intraplate and the MORB-like mantle sources. In samples from almost all parts of the Payenia province and in particular many Nevado, Llancanelo and older Payún Matrú basalts, trace element variations suggest a significant contribution from lower crustal melts, possibly up to 70% in the most extreme cases. The contaminating lower crustal rocks must have been depleted mafic rocks with a plagioclase component. The extensive melting of lower crust is probably related to the low thickness of the lithospheric mantle and preheating of the lower crust by earlier Mio-Pliocene volcanism. Rare earth element modelling of mantle melting calls for enriched source compositions and a beginning of melting within the garnet stability field for all Payenia basalts. The Río Colorado and Payún Matrú basalts indicate high solidus pressures around 3–3.1 GPa which requires either a thermal or compositional mantle anomaly. The model suggests a thinner lithosphere in the western Payenia region compared to the eastern. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/24368 Soager, Nina; Holm, Paul Martin; Llambias, Eduardo Jorge; Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment; Elsevier Science; Chemical Geology; 349-350; 6-2013; 36-53 0009-2541 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/24368 |
identifier_str_mv |
Soager, Nina; Holm, Paul Martin; Llambias, Eduardo Jorge; Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment; Elsevier Science; Chemical Geology; 349-350; 6-2013; 36-53 0009-2541 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemgeo.2013.04.007 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0009254113001502 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268998791593984 |
score |
13.13397 |