Numerical simulation of the open-pool reactor coolant system using a multi-domain approach
- Autores
- Corzo, Santiago Francisco; Godino, Dario Martin; Costa, Antonella Lombardi; Reis, Patricia A. L.; Pereira, Claubia; Ramajo, Damian Enrique
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The computational simulation of large-scale reactors is currently limited by the high computational cost. The system codes allow addressing these problems, although with the well-known loss of local information. The use of coupling domains to reduce the problems looks like a proper alternative to settle this issue. In the present paper, a multi-domain coupling 3-dimensional/0-dimensional method to solve the thermal hydraulics of the TRIGA Mark I IPR-R1 reactor was implemented into a Finite Volume suite. Despite of the broadly literature about coupling methods, even in the nuclear engineering community, most of them manage with different codes in a fully explicit way. In the other hand, the benefit of solve different domain approaches inside the same software is in the use of monolithic algorithms. The proposed method consists on using 3-dimensional full CFD to simulate the reactor pool and 0-dimensional modelling for the external cooling loop. This is made by implementing a set of ad hoc dynamics boundary conditions to model the momentum and energy balances along the pipeline. This strategy was used to perform long-time steady state simulations of the reactor at the design power of 100 kW as well as for the repowering up to 265 kW. The results demonstrated that the core is efficiently cooled at the higher power without need to increase the coolant mass flow rate of the external system. Moreover, two accidental events were simulated: the first case was the Station Black Out at full power of 265 kW. The results indicated that the loss of the external heat sink led to a slow pool heating, but the core remains being cooled by the natural circulation in the pool. In fact, the mass flow rate through the core is only reduced in 15% by the loss of the external loop circulation. Finally, a large-Loss of Coolant Accident for the operational power of 100 kW and keeping the pump running is performed. In this case, the pool is quickly empty if safety systems do not take action and the core is uncovered after 450 s completely losing the core cooling capacity.
Fil: Corzo, Santiago Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Godino, Dario Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Costa, Antonella Lombardi. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; Brasil
Fil: Reis, Patricia A. L.. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; Brasil
Fil: Pereira, Claubia. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; Brasil
Fil: Ramajo, Damian Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina - Materia
-
CFD
TRIGA REACTOR
3D/0D COUPLING
NUCLEAR SAFETY ASSESSMENT
OPENFOAM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/139783
Ver los metadatos del registro completo
| id |
CONICETDig_231ea6cbb7796192c48053893e20d43d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/139783 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Numerical simulation of the open-pool reactor coolant system using a multi-domain approachCorzo, Santiago FranciscoGodino, Dario MartinCosta, Antonella LombardiReis, Patricia A. L.Pereira, ClaubiaRamajo, Damian EnriqueCFDTRIGA REACTOR3D/0D COUPLINGNUCLEAR SAFETY ASSESSMENTOPENFOAMhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The computational simulation of large-scale reactors is currently limited by the high computational cost. The system codes allow addressing these problems, although with the well-known loss of local information. The use of coupling domains to reduce the problems looks like a proper alternative to settle this issue. In the present paper, a multi-domain coupling 3-dimensional/0-dimensional method to solve the thermal hydraulics of the TRIGA Mark I IPR-R1 reactor was implemented into a Finite Volume suite. Despite of the broadly literature about coupling methods, even in the nuclear engineering community, most of them manage with different codes in a fully explicit way. In the other hand, the benefit of solve different domain approaches inside the same software is in the use of monolithic algorithms. The proposed method consists on using 3-dimensional full CFD to simulate the reactor pool and 0-dimensional modelling for the external cooling loop. This is made by implementing a set of ad hoc dynamics boundary conditions to model the momentum and energy balances along the pipeline. This strategy was used to perform long-time steady state simulations of the reactor at the design power of 100 kW as well as for the repowering up to 265 kW. The results demonstrated that the core is efficiently cooled at the higher power without need to increase the coolant mass flow rate of the external system. Moreover, two accidental events were simulated: the first case was the Station Black Out at full power of 265 kW. The results indicated that the loss of the external heat sink led to a slow pool heating, but the core remains being cooled by the natural circulation in the pool. In fact, the mass flow rate through the core is only reduced in 15% by the loss of the external loop circulation. Finally, a large-Loss of Coolant Accident for the operational power of 100 kW and keeping the pump running is performed. In this case, the pool is quickly empty if safety systems do not take action and the core is uncovered after 450 s completely losing the core cooling capacity.Fil: Corzo, Santiago Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Godino, Dario Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Costa, Antonella Lombardi. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; BrasilFil: Reis, Patricia A. L.. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; BrasilFil: Pereira, Claubia. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; BrasilFil: Ramajo, Damian Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaElsevier Science SA2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/139783Corzo, Santiago Francisco; Godino, Dario Martin; Costa, Antonella Lombardi; Reis, Patricia A. L.; Pereira, Claubia; et al.; Numerical simulation of the open-pool reactor coolant system using a multi-domain approach; Elsevier Science SA; Nuclear Engineering and Design; 368; 8-2020; 1107390029-5493CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.nucengdes.2020.110739info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0029549320302338info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:00:14Zoai:ri.conicet.gov.ar:11336/139783instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:00:14.45CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Numerical simulation of the open-pool reactor coolant system using a multi-domain approach |
| title |
Numerical simulation of the open-pool reactor coolant system using a multi-domain approach |
| spellingShingle |
Numerical simulation of the open-pool reactor coolant system using a multi-domain approach Corzo, Santiago Francisco CFD TRIGA REACTOR 3D/0D COUPLING NUCLEAR SAFETY ASSESSMENT OPENFOAM |
| title_short |
Numerical simulation of the open-pool reactor coolant system using a multi-domain approach |
| title_full |
Numerical simulation of the open-pool reactor coolant system using a multi-domain approach |
| title_fullStr |
Numerical simulation of the open-pool reactor coolant system using a multi-domain approach |
| title_full_unstemmed |
Numerical simulation of the open-pool reactor coolant system using a multi-domain approach |
| title_sort |
Numerical simulation of the open-pool reactor coolant system using a multi-domain approach |
| dc.creator.none.fl_str_mv |
Corzo, Santiago Francisco Godino, Dario Martin Costa, Antonella Lombardi Reis, Patricia A. L. Pereira, Claubia Ramajo, Damian Enrique |
| author |
Corzo, Santiago Francisco |
| author_facet |
Corzo, Santiago Francisco Godino, Dario Martin Costa, Antonella Lombardi Reis, Patricia A. L. Pereira, Claubia Ramajo, Damian Enrique |
| author_role |
author |
| author2 |
Godino, Dario Martin Costa, Antonella Lombardi Reis, Patricia A. L. Pereira, Claubia Ramajo, Damian Enrique |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
CFD TRIGA REACTOR 3D/0D COUPLING NUCLEAR SAFETY ASSESSMENT OPENFOAM |
| topic |
CFD TRIGA REACTOR 3D/0D COUPLING NUCLEAR SAFETY ASSESSMENT OPENFOAM |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
The computational simulation of large-scale reactors is currently limited by the high computational cost. The system codes allow addressing these problems, although with the well-known loss of local information. The use of coupling domains to reduce the problems looks like a proper alternative to settle this issue. In the present paper, a multi-domain coupling 3-dimensional/0-dimensional method to solve the thermal hydraulics of the TRIGA Mark I IPR-R1 reactor was implemented into a Finite Volume suite. Despite of the broadly literature about coupling methods, even in the nuclear engineering community, most of them manage with different codes in a fully explicit way. In the other hand, the benefit of solve different domain approaches inside the same software is in the use of monolithic algorithms. The proposed method consists on using 3-dimensional full CFD to simulate the reactor pool and 0-dimensional modelling for the external cooling loop. This is made by implementing a set of ad hoc dynamics boundary conditions to model the momentum and energy balances along the pipeline. This strategy was used to perform long-time steady state simulations of the reactor at the design power of 100 kW as well as for the repowering up to 265 kW. The results demonstrated that the core is efficiently cooled at the higher power without need to increase the coolant mass flow rate of the external system. Moreover, two accidental events were simulated: the first case was the Station Black Out at full power of 265 kW. The results indicated that the loss of the external heat sink led to a slow pool heating, but the core remains being cooled by the natural circulation in the pool. In fact, the mass flow rate through the core is only reduced in 15% by the loss of the external loop circulation. Finally, a large-Loss of Coolant Accident for the operational power of 100 kW and keeping the pump running is performed. In this case, the pool is quickly empty if safety systems do not take action and the core is uncovered after 450 s completely losing the core cooling capacity. Fil: Corzo, Santiago Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Godino, Dario Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Costa, Antonella Lombardi. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; Brasil Fil: Reis, Patricia A. L.. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; Brasil Fil: Pereira, Claubia. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; Brasil Fil: Ramajo, Damian Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina |
| description |
The computational simulation of large-scale reactors is currently limited by the high computational cost. The system codes allow addressing these problems, although with the well-known loss of local information. The use of coupling domains to reduce the problems looks like a proper alternative to settle this issue. In the present paper, a multi-domain coupling 3-dimensional/0-dimensional method to solve the thermal hydraulics of the TRIGA Mark I IPR-R1 reactor was implemented into a Finite Volume suite. Despite of the broadly literature about coupling methods, even in the nuclear engineering community, most of them manage with different codes in a fully explicit way. In the other hand, the benefit of solve different domain approaches inside the same software is in the use of monolithic algorithms. The proposed method consists on using 3-dimensional full CFD to simulate the reactor pool and 0-dimensional modelling for the external cooling loop. This is made by implementing a set of ad hoc dynamics boundary conditions to model the momentum and energy balances along the pipeline. This strategy was used to perform long-time steady state simulations of the reactor at the design power of 100 kW as well as for the repowering up to 265 kW. The results demonstrated that the core is efficiently cooled at the higher power without need to increase the coolant mass flow rate of the external system. Moreover, two accidental events were simulated: the first case was the Station Black Out at full power of 265 kW. The results indicated that the loss of the external heat sink led to a slow pool heating, but the core remains being cooled by the natural circulation in the pool. In fact, the mass flow rate through the core is only reduced in 15% by the loss of the external loop circulation. Finally, a large-Loss of Coolant Accident for the operational power of 100 kW and keeping the pump running is performed. In this case, the pool is quickly empty if safety systems do not take action and the core is uncovered after 450 s completely losing the core cooling capacity. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/139783 Corzo, Santiago Francisco; Godino, Dario Martin; Costa, Antonella Lombardi; Reis, Patricia A. L.; Pereira, Claubia; et al.; Numerical simulation of the open-pool reactor coolant system using a multi-domain approach; Elsevier Science SA; Nuclear Engineering and Design; 368; 8-2020; 110739 0029-5493 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/139783 |
| identifier_str_mv |
Corzo, Santiago Francisco; Godino, Dario Martin; Costa, Antonella Lombardi; Reis, Patricia A. L.; Pereira, Claubia; et al.; Numerical simulation of the open-pool reactor coolant system using a multi-domain approach; Elsevier Science SA; Nuclear Engineering and Design; 368; 8-2020; 110739 0029-5493 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nucengdes.2020.110739 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0029549320302338 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science SA |
| publisher.none.fl_str_mv |
Elsevier Science SA |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977433265864704 |
| score |
13.087074 |