Numerical simulation of the open-pool reactor coolant system using a multi-domain approach

Autores
Corzo, Santiago Francisco; Godino, Dario Martin; Costa, Antonella Lombardi; Reis, Patricia A. L.; Pereira, Claubia; Ramajo, Damian Enrique
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The computational simulation of large-scale reactors is currently limited by the high computational cost. The system codes allow addressing these problems, although with the well-known loss of local information. The use of coupling domains to reduce the problems looks like a proper alternative to settle this issue. In the present paper, a multi-domain coupling 3-dimensional/0-dimensional method to solve the thermal hydraulics of the TRIGA Mark I IPR-R1 reactor was implemented into a Finite Volume suite. Despite of the broadly literature about coupling methods, even in the nuclear engineering community, most of them manage with different codes in a fully explicit way. In the other hand, the benefit of solve different domain approaches inside the same software is in the use of monolithic algorithms. The proposed method consists on using 3-dimensional full CFD to simulate the reactor pool and 0-dimensional modelling for the external cooling loop. This is made by implementing a set of ad hoc dynamics boundary conditions to model the momentum and energy balances along the pipeline. This strategy was used to perform long-time steady state simulations of the reactor at the design power of 100 kW as well as for the repowering up to 265 kW. The results demonstrated that the core is efficiently cooled at the higher power without need to increase the coolant mass flow rate of the external system. Moreover, two accidental events were simulated: the first case was the Station Black Out at full power of 265 kW. The results indicated that the loss of the external heat sink led to a slow pool heating, but the core remains being cooled by the natural circulation in the pool. In fact, the mass flow rate through the core is only reduced in 15% by the loss of the external loop circulation. Finally, a large-Loss of Coolant Accident for the operational power of 100 kW and keeping the pump running is performed. In this case, the pool is quickly empty if safety systems do not take action and the core is uncovered after 450 s completely losing the core cooling capacity.
Fil: Corzo, Santiago Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Godino, Dario Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Costa, Antonella Lombardi. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; Brasil
Fil: Reis, Patricia A. L.. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; Brasil
Fil: Pereira, Claubia. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; Brasil
Fil: Ramajo, Damian Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Materia
CFD
TRIGA REACTOR
3D/0D COUPLING
NUCLEAR SAFETY ASSESSMENT
OPENFOAM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/139783

id CONICETDig_231ea6cbb7796192c48053893e20d43d
oai_identifier_str oai:ri.conicet.gov.ar:11336/139783
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Numerical simulation of the open-pool reactor coolant system using a multi-domain approachCorzo, Santiago FranciscoGodino, Dario MartinCosta, Antonella LombardiReis, Patricia A. L.Pereira, ClaubiaRamajo, Damian EnriqueCFDTRIGA REACTOR3D/0D COUPLINGNUCLEAR SAFETY ASSESSMENTOPENFOAMhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The computational simulation of large-scale reactors is currently limited by the high computational cost. The system codes allow addressing these problems, although with the well-known loss of local information. The use of coupling domains to reduce the problems looks like a proper alternative to settle this issue. In the present paper, a multi-domain coupling 3-dimensional/0-dimensional method to solve the thermal hydraulics of the TRIGA Mark I IPR-R1 reactor was implemented into a Finite Volume suite. Despite of the broadly literature about coupling methods, even in the nuclear engineering community, most of them manage with different codes in a fully explicit way. In the other hand, the benefit of solve different domain approaches inside the same software is in the use of monolithic algorithms. The proposed method consists on using 3-dimensional full CFD to simulate the reactor pool and 0-dimensional modelling for the external cooling loop. This is made by implementing a set of ad hoc dynamics boundary conditions to model the momentum and energy balances along the pipeline. This strategy was used to perform long-time steady state simulations of the reactor at the design power of 100 kW as well as for the repowering up to 265 kW. The results demonstrated that the core is efficiently cooled at the higher power without need to increase the coolant mass flow rate of the external system. Moreover, two accidental events were simulated: the first case was the Station Black Out at full power of 265 kW. The results indicated that the loss of the external heat sink led to a slow pool heating, but the core remains being cooled by the natural circulation in the pool. In fact, the mass flow rate through the core is only reduced in 15% by the loss of the external loop circulation. Finally, a large-Loss of Coolant Accident for the operational power of 100 kW and keeping the pump running is performed. In this case, the pool is quickly empty if safety systems do not take action and the core is uncovered after 450 s completely losing the core cooling capacity.Fil: Corzo, Santiago Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Godino, Dario Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Costa, Antonella Lombardi. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; BrasilFil: Reis, Patricia A. L.. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; BrasilFil: Pereira, Claubia. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; BrasilFil: Ramajo, Damian Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaElsevier Science SA2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/139783Corzo, Santiago Francisco; Godino, Dario Martin; Costa, Antonella Lombardi; Reis, Patricia A. L.; Pereira, Claubia; et al.; Numerical simulation of the open-pool reactor coolant system using a multi-domain approach; Elsevier Science SA; Nuclear Engineering and Design; 368; 8-2020; 1107390029-5493CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.nucengdes.2020.110739info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0029549320302338info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:00:14Zoai:ri.conicet.gov.ar:11336/139783instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:00:14.45CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Numerical simulation of the open-pool reactor coolant system using a multi-domain approach
title Numerical simulation of the open-pool reactor coolant system using a multi-domain approach
spellingShingle Numerical simulation of the open-pool reactor coolant system using a multi-domain approach
Corzo, Santiago Francisco
CFD
TRIGA REACTOR
3D/0D COUPLING
NUCLEAR SAFETY ASSESSMENT
OPENFOAM
title_short Numerical simulation of the open-pool reactor coolant system using a multi-domain approach
title_full Numerical simulation of the open-pool reactor coolant system using a multi-domain approach
title_fullStr Numerical simulation of the open-pool reactor coolant system using a multi-domain approach
title_full_unstemmed Numerical simulation of the open-pool reactor coolant system using a multi-domain approach
title_sort Numerical simulation of the open-pool reactor coolant system using a multi-domain approach
dc.creator.none.fl_str_mv Corzo, Santiago Francisco
Godino, Dario Martin
Costa, Antonella Lombardi
Reis, Patricia A. L.
Pereira, Claubia
Ramajo, Damian Enrique
author Corzo, Santiago Francisco
author_facet Corzo, Santiago Francisco
Godino, Dario Martin
Costa, Antonella Lombardi
Reis, Patricia A. L.
Pereira, Claubia
Ramajo, Damian Enrique
author_role author
author2 Godino, Dario Martin
Costa, Antonella Lombardi
Reis, Patricia A. L.
Pereira, Claubia
Ramajo, Damian Enrique
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv CFD
TRIGA REACTOR
3D/0D COUPLING
NUCLEAR SAFETY ASSESSMENT
OPENFOAM
topic CFD
TRIGA REACTOR
3D/0D COUPLING
NUCLEAR SAFETY ASSESSMENT
OPENFOAM
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The computational simulation of large-scale reactors is currently limited by the high computational cost. The system codes allow addressing these problems, although with the well-known loss of local information. The use of coupling domains to reduce the problems looks like a proper alternative to settle this issue. In the present paper, a multi-domain coupling 3-dimensional/0-dimensional method to solve the thermal hydraulics of the TRIGA Mark I IPR-R1 reactor was implemented into a Finite Volume suite. Despite of the broadly literature about coupling methods, even in the nuclear engineering community, most of them manage with different codes in a fully explicit way. In the other hand, the benefit of solve different domain approaches inside the same software is in the use of monolithic algorithms. The proposed method consists on using 3-dimensional full CFD to simulate the reactor pool and 0-dimensional modelling for the external cooling loop. This is made by implementing a set of ad hoc dynamics boundary conditions to model the momentum and energy balances along the pipeline. This strategy was used to perform long-time steady state simulations of the reactor at the design power of 100 kW as well as for the repowering up to 265 kW. The results demonstrated that the core is efficiently cooled at the higher power without need to increase the coolant mass flow rate of the external system. Moreover, two accidental events were simulated: the first case was the Station Black Out at full power of 265 kW. The results indicated that the loss of the external heat sink led to a slow pool heating, but the core remains being cooled by the natural circulation in the pool. In fact, the mass flow rate through the core is only reduced in 15% by the loss of the external loop circulation. Finally, a large-Loss of Coolant Accident for the operational power of 100 kW and keeping the pump running is performed. In this case, the pool is quickly empty if safety systems do not take action and the core is uncovered after 450 s completely losing the core cooling capacity.
Fil: Corzo, Santiago Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Godino, Dario Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Costa, Antonella Lombardi. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; Brasil
Fil: Reis, Patricia A. L.. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; Brasil
Fil: Pereira, Claubia. Universidade Federal de Minas Gerais; Brasil. Conselho Nacional de Desenvolvimiento Científico e Tecnológico; Brasil
Fil: Ramajo, Damian Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
description The computational simulation of large-scale reactors is currently limited by the high computational cost. The system codes allow addressing these problems, although with the well-known loss of local information. The use of coupling domains to reduce the problems looks like a proper alternative to settle this issue. In the present paper, a multi-domain coupling 3-dimensional/0-dimensional method to solve the thermal hydraulics of the TRIGA Mark I IPR-R1 reactor was implemented into a Finite Volume suite. Despite of the broadly literature about coupling methods, even in the nuclear engineering community, most of them manage with different codes in a fully explicit way. In the other hand, the benefit of solve different domain approaches inside the same software is in the use of monolithic algorithms. The proposed method consists on using 3-dimensional full CFD to simulate the reactor pool and 0-dimensional modelling for the external cooling loop. This is made by implementing a set of ad hoc dynamics boundary conditions to model the momentum and energy balances along the pipeline. This strategy was used to perform long-time steady state simulations of the reactor at the design power of 100 kW as well as for the repowering up to 265 kW. The results demonstrated that the core is efficiently cooled at the higher power without need to increase the coolant mass flow rate of the external system. Moreover, two accidental events were simulated: the first case was the Station Black Out at full power of 265 kW. The results indicated that the loss of the external heat sink led to a slow pool heating, but the core remains being cooled by the natural circulation in the pool. In fact, the mass flow rate through the core is only reduced in 15% by the loss of the external loop circulation. Finally, a large-Loss of Coolant Accident for the operational power of 100 kW and keeping the pump running is performed. In this case, the pool is quickly empty if safety systems do not take action and the core is uncovered after 450 s completely losing the core cooling capacity.
publishDate 2020
dc.date.none.fl_str_mv 2020-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/139783
Corzo, Santiago Francisco; Godino, Dario Martin; Costa, Antonella Lombardi; Reis, Patricia A. L.; Pereira, Claubia; et al.; Numerical simulation of the open-pool reactor coolant system using a multi-domain approach; Elsevier Science SA; Nuclear Engineering and Design; 368; 8-2020; 110739
0029-5493
CONICET Digital
CONICET
url http://hdl.handle.net/11336/139783
identifier_str_mv Corzo, Santiago Francisco; Godino, Dario Martin; Costa, Antonella Lombardi; Reis, Patricia A. L.; Pereira, Claubia; et al.; Numerical simulation of the open-pool reactor coolant system using a multi-domain approach; Elsevier Science SA; Nuclear Engineering and Design; 368; 8-2020; 110739
0029-5493
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nucengdes.2020.110739
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0029549320302338
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science SA
publisher.none.fl_str_mv Elsevier Science SA
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847977433265864704
score 13.087074