On the Connection Between Quantum Probability and Geometry

Autores
Holik, Federico Hernán
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We discuss the mathematical structures that underlie quantum probabilities. More specifically, we explore possible connections between logic, geometry and probability theory. We propose an interpretation that generalizes the method developed by R. T. Cox to the quantum logical approach to physical theories. We stress the relevance of developing a geometrical interpretation of quantum mechanics.
Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
GEOMETRY
QUANTUM PROBABILITY
RINGS OF OPERATORS
QUANTUM LOGIC
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/181285

id CONICETDig_22db1b841a26998cc65005f5463a5085
oai_identifier_str oai:ri.conicet.gov.ar:11336/181285
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the Connection Between Quantum Probability and GeometryHolik, Federico HernánGEOMETRYQUANTUM PROBABILITYRINGS OF OPERATORSQUANTUM LOGIChttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We discuss the mathematical structures that underlie quantum probabilities. More specifically, we explore possible connections between logic, geometry and probability theory. We propose an interpretation that generalizes the method developed by R. T. Cox to the quantum logical approach to physical theories. We stress the relevance of developing a geometrical interpretation of quantum mechanics.Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaQuanta2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/181285Holik, Federico Hernán; On the Connection Between Quantum Probability and Geometry; Quanta; Quanta; 10; 1; 6-2021; 1-141314-7374CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://quanta.ws/ojs/index.php/quanta/article/view/148info:eu-repo/semantics/altIdentifier/doi/10.12743/quanta.v10i1.148info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:20:59Zoai:ri.conicet.gov.ar:11336/181285instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:20:59.283CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the Connection Between Quantum Probability and Geometry
title On the Connection Between Quantum Probability and Geometry
spellingShingle On the Connection Between Quantum Probability and Geometry
Holik, Federico Hernán
GEOMETRY
QUANTUM PROBABILITY
RINGS OF OPERATORS
QUANTUM LOGIC
title_short On the Connection Between Quantum Probability and Geometry
title_full On the Connection Between Quantum Probability and Geometry
title_fullStr On the Connection Between Quantum Probability and Geometry
title_full_unstemmed On the Connection Between Quantum Probability and Geometry
title_sort On the Connection Between Quantum Probability and Geometry
dc.creator.none.fl_str_mv Holik, Federico Hernán
author Holik, Federico Hernán
author_facet Holik, Federico Hernán
author_role author
dc.subject.none.fl_str_mv GEOMETRY
QUANTUM PROBABILITY
RINGS OF OPERATORS
QUANTUM LOGIC
topic GEOMETRY
QUANTUM PROBABILITY
RINGS OF OPERATORS
QUANTUM LOGIC
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We discuss the mathematical structures that underlie quantum probabilities. More specifically, we explore possible connections between logic, geometry and probability theory. We propose an interpretation that generalizes the method developed by R. T. Cox to the quantum logical approach to physical theories. We stress the relevance of developing a geometrical interpretation of quantum mechanics.
Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description We discuss the mathematical structures that underlie quantum probabilities. More specifically, we explore possible connections between logic, geometry and probability theory. We propose an interpretation that generalizes the method developed by R. T. Cox to the quantum logical approach to physical theories. We stress the relevance of developing a geometrical interpretation of quantum mechanics.
publishDate 2021
dc.date.none.fl_str_mv 2021-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/181285
Holik, Federico Hernán; On the Connection Between Quantum Probability and Geometry; Quanta; Quanta; 10; 1; 6-2021; 1-14
1314-7374
CONICET Digital
CONICET
url http://hdl.handle.net/11336/181285
identifier_str_mv Holik, Federico Hernán; On the Connection Between Quantum Probability and Geometry; Quanta; Quanta; 10; 1; 6-2021; 1-14
1314-7374
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://quanta.ws/ojs/index.php/quanta/article/view/148
info:eu-repo/semantics/altIdentifier/doi/10.12743/quanta.v10i1.148
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Quanta
publisher.none.fl_str_mv Quanta
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781706782113792
score 12.982451