First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma
- Autores
- Zhang, Wenmin; Zhang, Ling; Cheng, Yunxin; Morita, Shigeru; Sheng, Hui; Mitnik, Dario Marcelo; Sun, Youwen; Wang, Zhengxiong; Chu, Yuqi; Hu, Ailan; Jie, Yinxian; Liu, Haiqing
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- High-Z impurity accumulation suppression and mitigation in core plasma is frequently observed in EAST edge localized mode mitigation experiments by using resonant magnetic perturbations (RMP) coils. To study the individual effects of the RMP field on impurity transport, based on high-performance extreme ultraviolet impurity spectroscopic diagnostics, the effect of the n = 1 (n is the toroidal mode number) RMP field on the behavior of intrinsic impurity ions at the plasma edge, e.g. He+, Li2+, C2+–C5+, O5+, Fe8+, Fe15+, Fe17+, Fe22+, Cu17+, Mo12+, Mo13+ and W27+, is analyzed for the first time in L-mode discharges. Based on the evaluation of the location of these impurity ions, it is found that with the increase in RMP current (IRMP), an impurity screening layer inside the last closed flux surface is formed, e.g. at ρ = 0.74–0.96, which is also the region that the RMP field affects. Outside this screening layer, the impurity ion flux of He+, Li2+, C2+, C3+, O5+, Fe8+, Mo12+ and Mo13+ ions increases gradually, while inside this screening layer, the impurity ion flux of C4+, C5+, Cu17+, W27+, Fe15+, Fe17+ and Fe22+ ions decreases gradually. When IRMP is higher than a threshold value, RMP field penetration occurs, accompanied with m/n = 2/1 mode locking, and the position of this screening layer moves to the plasma core region, i.e. ρ = 0.66–0.76, close to the q = 2 surface, and the opposite behavior of the impurity ion flux at two sides of the screening layer is strengthened dramatically. As a result, significant decontamination effects in the plasma core region, indicated by the factor of ((ΓImpZ+)w/o–(ΓImpZ+))/(ΓImpZ+)w/o (where (ΓImpZ+)/(ΓImpZ+)w/o denotes the impurity ion flux ratio with and without RMP), is observed, i.e. 30%–60% for heavy impurity (Fe, Cu, Mo, W), and ∼27% for light impurity of C. In addition, the analysis of the decontamination effects of C and Fe impurities under four different RMP phase configurations shows that it may be related to the strength of the response of the plasma to RMP. These results enhance the understanding of impurity accumulation suppression by the n = 1 RMP field and demonstrate a candidate approach using RMP coils for W control in magnetic confinement devices.
Fil: Zhang, Wenmin. Chinese Academy of Sciences; República de China. University of Science and Technology of China; República de China
Fil: Zhang, Ling. Chinese Academy of Sciences; República de China
Fil: Cheng, Yunxin. Chinese Academy of Sciences; República de China
Fil: Morita, Shigeru. National Institute for Fusion Science; Japón
Fil: Sheng, Hui. Chinese Academy of Sciences; República de China
Fil: Mitnik, Dario Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Sun, Youwen. Chinese Academy of Sciences; República de China
Fil: Wang, Zhengxiong. Dalian University of Technology; China
Fil: Chu, Yuqi. University of California at Los Angeles; Estados Unidos
Fil: Hu, Ailan. Chinese Academy of Sciences; República de China
Fil: Jie, Yinxian. Chinese Academy of Sciences; República de China
Fil: Liu, Haiqing. Chinese Academy of Sciences; República de China - Materia
-
EAST tokamak
Impurity ion flux
Resonant magnetic perturbations
Screening layer - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/263029
Ver los metadatos del registro completo
id |
CONICETDig_22d3cce5f87541f56a57be88bacf25de |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/263029 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasmaZhang, WenminZhang, LingCheng, YunxinMorita, ShigeruSheng, HuiMitnik, Dario MarceloSun, YouwenWang, ZhengxiongChu, YuqiHu, AilanJie, YinxianLiu, HaiqingEAST tokamakImpurity ion fluxResonant magnetic perturbationsScreening layerhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1High-Z impurity accumulation suppression and mitigation in core plasma is frequently observed in EAST edge localized mode mitigation experiments by using resonant magnetic perturbations (RMP) coils. To study the individual effects of the RMP field on impurity transport, based on high-performance extreme ultraviolet impurity spectroscopic diagnostics, the effect of the n = 1 (n is the toroidal mode number) RMP field on the behavior of intrinsic impurity ions at the plasma edge, e.g. He+, Li2+, C2+–C5+, O5+, Fe8+, Fe15+, Fe17+, Fe22+, Cu17+, Mo12+, Mo13+ and W27+, is analyzed for the first time in L-mode discharges. Based on the evaluation of the location of these impurity ions, it is found that with the increase in RMP current (IRMP), an impurity screening layer inside the last closed flux surface is formed, e.g. at ρ = 0.74–0.96, which is also the region that the RMP field affects. Outside this screening layer, the impurity ion flux of He+, Li2+, C2+, C3+, O5+, Fe8+, Mo12+ and Mo13+ ions increases gradually, while inside this screening layer, the impurity ion flux of C4+, C5+, Cu17+, W27+, Fe15+, Fe17+ and Fe22+ ions decreases gradually. When IRMP is higher than a threshold value, RMP field penetration occurs, accompanied with m/n = 2/1 mode locking, and the position of this screening layer moves to the plasma core region, i.e. ρ = 0.66–0.76, close to the q = 2 surface, and the opposite behavior of the impurity ion flux at two sides of the screening layer is strengthened dramatically. As a result, significant decontamination effects in the plasma core region, indicated by the factor of ((ΓImpZ+)w/o–(ΓImpZ+))/(ΓImpZ+)w/o (where (ΓImpZ+)/(ΓImpZ+)w/o denotes the impurity ion flux ratio with and without RMP), is observed, i.e. 30%–60% for heavy impurity (Fe, Cu, Mo, W), and ∼27% for light impurity of C. In addition, the analysis of the decontamination effects of C and Fe impurities under four different RMP phase configurations shows that it may be related to the strength of the response of the plasma to RMP. These results enhance the understanding of impurity accumulation suppression by the n = 1 RMP field and demonstrate a candidate approach using RMP coils for W control in magnetic confinement devices.Fil: Zhang, Wenmin. Chinese Academy of Sciences; República de China. University of Science and Technology of China; República de ChinaFil: Zhang, Ling. Chinese Academy of Sciences; República de ChinaFil: Cheng, Yunxin. Chinese Academy of Sciences; República de ChinaFil: Morita, Shigeru. National Institute for Fusion Science; JapónFil: Sheng, Hui. Chinese Academy of Sciences; República de ChinaFil: Mitnik, Dario Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Sun, Youwen. Chinese Academy of Sciences; República de ChinaFil: Wang, Zhengxiong. Dalian University of Technology; ChinaFil: Chu, Yuqi. University of California at Los Angeles; Estados UnidosFil: Hu, Ailan. Chinese Academy of Sciences; República de ChinaFil: Jie, Yinxian. Chinese Academy of Sciences; República de ChinaFil: Liu, Haiqing. Chinese Academy of Sciences; República de ChinaInternational Atomic Energy Agency2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263029Zhang, Wenmin; Zhang, Ling; Cheng, Yunxin; Morita, Shigeru; Sheng, Hui; et al.; First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma; International Atomic Energy Agency; Nuclear Fusion; 64; 8; 6-2024; 1-140029-55151741-4326CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1741-4326/ad4ef4info:eu-repo/semantics/altIdentifier/doi/10.1088/1741-4326/ad4ef4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:32:37Zoai:ri.conicet.gov.ar:11336/263029instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:32:37.489CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma |
title |
First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma |
spellingShingle |
First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma Zhang, Wenmin EAST tokamak Impurity ion flux Resonant magnetic perturbations Screening layer |
title_short |
First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma |
title_full |
First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma |
title_fullStr |
First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma |
title_full_unstemmed |
First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma |
title_sort |
First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma |
dc.creator.none.fl_str_mv |
Zhang, Wenmin Zhang, Ling Cheng, Yunxin Morita, Shigeru Sheng, Hui Mitnik, Dario Marcelo Sun, Youwen Wang, Zhengxiong Chu, Yuqi Hu, Ailan Jie, Yinxian Liu, Haiqing |
author |
Zhang, Wenmin |
author_facet |
Zhang, Wenmin Zhang, Ling Cheng, Yunxin Morita, Shigeru Sheng, Hui Mitnik, Dario Marcelo Sun, Youwen Wang, Zhengxiong Chu, Yuqi Hu, Ailan Jie, Yinxian Liu, Haiqing |
author_role |
author |
author2 |
Zhang, Ling Cheng, Yunxin Morita, Shigeru Sheng, Hui Mitnik, Dario Marcelo Sun, Youwen Wang, Zhengxiong Chu, Yuqi Hu, Ailan Jie, Yinxian Liu, Haiqing |
author2_role |
author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
EAST tokamak Impurity ion flux Resonant magnetic perturbations Screening layer |
topic |
EAST tokamak Impurity ion flux Resonant magnetic perturbations Screening layer |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
High-Z impurity accumulation suppression and mitigation in core plasma is frequently observed in EAST edge localized mode mitigation experiments by using resonant magnetic perturbations (RMP) coils. To study the individual effects of the RMP field on impurity transport, based on high-performance extreme ultraviolet impurity spectroscopic diagnostics, the effect of the n = 1 (n is the toroidal mode number) RMP field on the behavior of intrinsic impurity ions at the plasma edge, e.g. He+, Li2+, C2+–C5+, O5+, Fe8+, Fe15+, Fe17+, Fe22+, Cu17+, Mo12+, Mo13+ and W27+, is analyzed for the first time in L-mode discharges. Based on the evaluation of the location of these impurity ions, it is found that with the increase in RMP current (IRMP), an impurity screening layer inside the last closed flux surface is formed, e.g. at ρ = 0.74–0.96, which is also the region that the RMP field affects. Outside this screening layer, the impurity ion flux of He+, Li2+, C2+, C3+, O5+, Fe8+, Mo12+ and Mo13+ ions increases gradually, while inside this screening layer, the impurity ion flux of C4+, C5+, Cu17+, W27+, Fe15+, Fe17+ and Fe22+ ions decreases gradually. When IRMP is higher than a threshold value, RMP field penetration occurs, accompanied with m/n = 2/1 mode locking, and the position of this screening layer moves to the plasma core region, i.e. ρ = 0.66–0.76, close to the q = 2 surface, and the opposite behavior of the impurity ion flux at two sides of the screening layer is strengthened dramatically. As a result, significant decontamination effects in the plasma core region, indicated by the factor of ((ΓImpZ+)w/o–(ΓImpZ+))/(ΓImpZ+)w/o (where (ΓImpZ+)/(ΓImpZ+)w/o denotes the impurity ion flux ratio with and without RMP), is observed, i.e. 30%–60% for heavy impurity (Fe, Cu, Mo, W), and ∼27% for light impurity of C. In addition, the analysis of the decontamination effects of C and Fe impurities under four different RMP phase configurations shows that it may be related to the strength of the response of the plasma to RMP. These results enhance the understanding of impurity accumulation suppression by the n = 1 RMP field and demonstrate a candidate approach using RMP coils for W control in magnetic confinement devices. Fil: Zhang, Wenmin. Chinese Academy of Sciences; República de China. University of Science and Technology of China; República de China Fil: Zhang, Ling. Chinese Academy of Sciences; República de China Fil: Cheng, Yunxin. Chinese Academy of Sciences; República de China Fil: Morita, Shigeru. National Institute for Fusion Science; Japón Fil: Sheng, Hui. Chinese Academy of Sciences; República de China Fil: Mitnik, Dario Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Sun, Youwen. Chinese Academy of Sciences; República de China Fil: Wang, Zhengxiong. Dalian University of Technology; China Fil: Chu, Yuqi. University of California at Los Angeles; Estados Unidos Fil: Hu, Ailan. Chinese Academy of Sciences; República de China Fil: Jie, Yinxian. Chinese Academy of Sciences; República de China Fil: Liu, Haiqing. Chinese Academy of Sciences; República de China |
description |
High-Z impurity accumulation suppression and mitigation in core plasma is frequently observed in EAST edge localized mode mitigation experiments by using resonant magnetic perturbations (RMP) coils. To study the individual effects of the RMP field on impurity transport, based on high-performance extreme ultraviolet impurity spectroscopic diagnostics, the effect of the n = 1 (n is the toroidal mode number) RMP field on the behavior of intrinsic impurity ions at the plasma edge, e.g. He+, Li2+, C2+–C5+, O5+, Fe8+, Fe15+, Fe17+, Fe22+, Cu17+, Mo12+, Mo13+ and W27+, is analyzed for the first time in L-mode discharges. Based on the evaluation of the location of these impurity ions, it is found that with the increase in RMP current (IRMP), an impurity screening layer inside the last closed flux surface is formed, e.g. at ρ = 0.74–0.96, which is also the region that the RMP field affects. Outside this screening layer, the impurity ion flux of He+, Li2+, C2+, C3+, O5+, Fe8+, Mo12+ and Mo13+ ions increases gradually, while inside this screening layer, the impurity ion flux of C4+, C5+, Cu17+, W27+, Fe15+, Fe17+ and Fe22+ ions decreases gradually. When IRMP is higher than a threshold value, RMP field penetration occurs, accompanied with m/n = 2/1 mode locking, and the position of this screening layer moves to the plasma core region, i.e. ρ = 0.66–0.76, close to the q = 2 surface, and the opposite behavior of the impurity ion flux at two sides of the screening layer is strengthened dramatically. As a result, significant decontamination effects in the plasma core region, indicated by the factor of ((ΓImpZ+)w/o–(ΓImpZ+))/(ΓImpZ+)w/o (where (ΓImpZ+)/(ΓImpZ+)w/o denotes the impurity ion flux ratio with and without RMP), is observed, i.e. 30%–60% for heavy impurity (Fe, Cu, Mo, W), and ∼27% for light impurity of C. In addition, the analysis of the decontamination effects of C and Fe impurities under four different RMP phase configurations shows that it may be related to the strength of the response of the plasma to RMP. These results enhance the understanding of impurity accumulation suppression by the n = 1 RMP field and demonstrate a candidate approach using RMP coils for W control in magnetic confinement devices. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/263029 Zhang, Wenmin; Zhang, Ling; Cheng, Yunxin; Morita, Shigeru; Sheng, Hui; et al.; First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma; International Atomic Energy Agency; Nuclear Fusion; 64; 8; 6-2024; 1-14 0029-5515 1741-4326 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/263029 |
identifier_str_mv |
Zhang, Wenmin; Zhang, Ling; Cheng, Yunxin; Morita, Shigeru; Sheng, Hui; et al.; First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma; International Atomic Energy Agency; Nuclear Fusion; 64; 8; 6-2024; 1-14 0029-5515 1741-4326 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1741-4326/ad4ef4 info:eu-repo/semantics/altIdentifier/doi/10.1088/1741-4326/ad4ef4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
International Atomic Energy Agency |
publisher.none.fl_str_mv |
International Atomic Energy Agency |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083458472869888 |
score |
13.22299 |