First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma

Autores
Zhang, Wenmin; Zhang, Ling; Cheng, Yunxin; Morita, Shigeru; Sheng, Hui; Mitnik, Dario Marcelo; Sun, Youwen; Wang, Zhengxiong; Chu, Yuqi; Hu, Ailan; Jie, Yinxian; Liu, Haiqing
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
High-Z impurity accumulation suppression and mitigation in core plasma is frequently observed in EAST edge localized mode mitigation experiments by using resonant magnetic perturbations (RMP) coils. To study the individual effects of the RMP field on impurity transport, based on high-performance extreme ultraviolet impurity spectroscopic diagnostics, the effect of the n = 1 (n is the toroidal mode number) RMP field on the behavior of intrinsic impurity ions at the plasma edge, e.g. He+, Li2+, C2+–C5+, O5+, Fe8+, Fe15+, Fe17+, Fe22+, Cu17+, Mo12+, Mo13+ and W27+, is analyzed for the first time in L-mode discharges. Based on the evaluation of the location of these impurity ions, it is found that with the increase in RMP current (IRMP), an impurity screening layer inside the last closed flux surface is formed, e.g. at ρ = 0.74–0.96, which is also the region that the RMP field affects. Outside this screening layer, the impurity ion flux of He+, Li2+, C2+, C3+, O5+, Fe8+, Mo12+ and Mo13+ ions increases gradually, while inside this screening layer, the impurity ion flux of C4+, C5+, Cu17+, W27+, Fe15+, Fe17+ and Fe22+ ions decreases gradually. When IRMP is higher than a threshold value, RMP field penetration occurs, accompanied with m/n = 2/1 mode locking, and the position of this screening layer moves to the plasma core region, i.e. ρ = 0.66–0.76, close to the q = 2 surface, and the opposite behavior of the impurity ion flux at two sides of the screening layer is strengthened dramatically. As a result, significant decontamination effects in the plasma core region, indicated by the factor of ((ΓImpZ+)w/o–(ΓImpZ+))/(ΓImpZ+)w/o (where (ΓImpZ+)/(ΓImpZ+)w/o denotes the impurity ion flux ratio with and without RMP), is observed, i.e. 30%–60% for heavy impurity (Fe, Cu, Mo, W), and ∼27% for light impurity of C. In addition, the analysis of the decontamination effects of C and Fe impurities under four different RMP phase configurations shows that it may be related to the strength of the response of the plasma to RMP. These results enhance the understanding of impurity accumulation suppression by the n = 1 RMP field and demonstrate a candidate approach using RMP coils for W control in magnetic confinement devices.
Fil: Zhang, Wenmin. Chinese Academy of Sciences; República de China. University of Science and Technology of China; República de China
Fil: Zhang, Ling. Chinese Academy of Sciences; República de China
Fil: Cheng, Yunxin. Chinese Academy of Sciences; República de China
Fil: Morita, Shigeru. National Institute for Fusion Science; Japón
Fil: Sheng, Hui. Chinese Academy of Sciences; República de China
Fil: Mitnik, Dario Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Sun, Youwen. Chinese Academy of Sciences; República de China
Fil: Wang, Zhengxiong. Dalian University of Technology; China
Fil: Chu, Yuqi. University of California at Los Angeles; Estados Unidos
Fil: Hu, Ailan. Chinese Academy of Sciences; República de China
Fil: Jie, Yinxian. Chinese Academy of Sciences; República de China
Fil: Liu, Haiqing. Chinese Academy of Sciences; República de China
Materia
EAST tokamak
Impurity ion flux
Resonant magnetic perturbations
Screening layer
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/263029

id CONICETDig_22d3cce5f87541f56a57be88bacf25de
oai_identifier_str oai:ri.conicet.gov.ar:11336/263029
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasmaZhang, WenminZhang, LingCheng, YunxinMorita, ShigeruSheng, HuiMitnik, Dario MarceloSun, YouwenWang, ZhengxiongChu, YuqiHu, AilanJie, YinxianLiu, HaiqingEAST tokamakImpurity ion fluxResonant magnetic perturbationsScreening layerhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1High-Z impurity accumulation suppression and mitigation in core plasma is frequently observed in EAST edge localized mode mitigation experiments by using resonant magnetic perturbations (RMP) coils. To study the individual effects of the RMP field on impurity transport, based on high-performance extreme ultraviolet impurity spectroscopic diagnostics, the effect of the n = 1 (n is the toroidal mode number) RMP field on the behavior of intrinsic impurity ions at the plasma edge, e.g. He+, Li2+, C2+–C5+, O5+, Fe8+, Fe15+, Fe17+, Fe22+, Cu17+, Mo12+, Mo13+ and W27+, is analyzed for the first time in L-mode discharges. Based on the evaluation of the location of these impurity ions, it is found that with the increase in RMP current (IRMP), an impurity screening layer inside the last closed flux surface is formed, e.g. at ρ = 0.74–0.96, which is also the region that the RMP field affects. Outside this screening layer, the impurity ion flux of He+, Li2+, C2+, C3+, O5+, Fe8+, Mo12+ and Mo13+ ions increases gradually, while inside this screening layer, the impurity ion flux of C4+, C5+, Cu17+, W27+, Fe15+, Fe17+ and Fe22+ ions decreases gradually. When IRMP is higher than a threshold value, RMP field penetration occurs, accompanied with m/n = 2/1 mode locking, and the position of this screening layer moves to the plasma core region, i.e. ρ = 0.66–0.76, close to the q = 2 surface, and the opposite behavior of the impurity ion flux at two sides of the screening layer is strengthened dramatically. As a result, significant decontamination effects in the plasma core region, indicated by the factor of ((ΓImpZ+)w/o–(ΓImpZ+))/(ΓImpZ+)w/o (where (ΓImpZ+)/(ΓImpZ+)w/o denotes the impurity ion flux ratio with and without RMP), is observed, i.e. 30%–60% for heavy impurity (Fe, Cu, Mo, W), and ∼27% for light impurity of C. In addition, the analysis of the decontamination effects of C and Fe impurities under four different RMP phase configurations shows that it may be related to the strength of the response of the plasma to RMP. These results enhance the understanding of impurity accumulation suppression by the n = 1 RMP field and demonstrate a candidate approach using RMP coils for W control in magnetic confinement devices.Fil: Zhang, Wenmin. Chinese Academy of Sciences; República de China. University of Science and Technology of China; República de ChinaFil: Zhang, Ling. Chinese Academy of Sciences; República de ChinaFil: Cheng, Yunxin. Chinese Academy of Sciences; República de ChinaFil: Morita, Shigeru. National Institute for Fusion Science; JapónFil: Sheng, Hui. Chinese Academy of Sciences; República de ChinaFil: Mitnik, Dario Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Sun, Youwen. Chinese Academy of Sciences; República de ChinaFil: Wang, Zhengxiong. Dalian University of Technology; ChinaFil: Chu, Yuqi. University of California at Los Angeles; Estados UnidosFil: Hu, Ailan. Chinese Academy of Sciences; República de ChinaFil: Jie, Yinxian. Chinese Academy of Sciences; República de ChinaFil: Liu, Haiqing. Chinese Academy of Sciences; República de ChinaInternational Atomic Energy Agency2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263029Zhang, Wenmin; Zhang, Ling; Cheng, Yunxin; Morita, Shigeru; Sheng, Hui; et al.; First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma; International Atomic Energy Agency; Nuclear Fusion; 64; 8; 6-2024; 1-140029-55151741-4326CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1741-4326/ad4ef4info:eu-repo/semantics/altIdentifier/doi/10.1088/1741-4326/ad4ef4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:32:37Zoai:ri.conicet.gov.ar:11336/263029instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:32:37.489CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma
title First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma
spellingShingle First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma
Zhang, Wenmin
EAST tokamak
Impurity ion flux
Resonant magnetic perturbations
Screening layer
title_short First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma
title_full First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma
title_fullStr First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma
title_full_unstemmed First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma
title_sort First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma
dc.creator.none.fl_str_mv Zhang, Wenmin
Zhang, Ling
Cheng, Yunxin
Morita, Shigeru
Sheng, Hui
Mitnik, Dario Marcelo
Sun, Youwen
Wang, Zhengxiong
Chu, Yuqi
Hu, Ailan
Jie, Yinxian
Liu, Haiqing
author Zhang, Wenmin
author_facet Zhang, Wenmin
Zhang, Ling
Cheng, Yunxin
Morita, Shigeru
Sheng, Hui
Mitnik, Dario Marcelo
Sun, Youwen
Wang, Zhengxiong
Chu, Yuqi
Hu, Ailan
Jie, Yinxian
Liu, Haiqing
author_role author
author2 Zhang, Ling
Cheng, Yunxin
Morita, Shigeru
Sheng, Hui
Mitnik, Dario Marcelo
Sun, Youwen
Wang, Zhengxiong
Chu, Yuqi
Hu, Ailan
Jie, Yinxian
Liu, Haiqing
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv EAST tokamak
Impurity ion flux
Resonant magnetic perturbations
Screening layer
topic EAST tokamak
Impurity ion flux
Resonant magnetic perturbations
Screening layer
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv High-Z impurity accumulation suppression and mitigation in core plasma is frequently observed in EAST edge localized mode mitigation experiments by using resonant magnetic perturbations (RMP) coils. To study the individual effects of the RMP field on impurity transport, based on high-performance extreme ultraviolet impurity spectroscopic diagnostics, the effect of the n = 1 (n is the toroidal mode number) RMP field on the behavior of intrinsic impurity ions at the plasma edge, e.g. He+, Li2+, C2+–C5+, O5+, Fe8+, Fe15+, Fe17+, Fe22+, Cu17+, Mo12+, Mo13+ and W27+, is analyzed for the first time in L-mode discharges. Based on the evaluation of the location of these impurity ions, it is found that with the increase in RMP current (IRMP), an impurity screening layer inside the last closed flux surface is formed, e.g. at ρ = 0.74–0.96, which is also the region that the RMP field affects. Outside this screening layer, the impurity ion flux of He+, Li2+, C2+, C3+, O5+, Fe8+, Mo12+ and Mo13+ ions increases gradually, while inside this screening layer, the impurity ion flux of C4+, C5+, Cu17+, W27+, Fe15+, Fe17+ and Fe22+ ions decreases gradually. When IRMP is higher than a threshold value, RMP field penetration occurs, accompanied with m/n = 2/1 mode locking, and the position of this screening layer moves to the plasma core region, i.e. ρ = 0.66–0.76, close to the q = 2 surface, and the opposite behavior of the impurity ion flux at two sides of the screening layer is strengthened dramatically. As a result, significant decontamination effects in the plasma core region, indicated by the factor of ((ΓImpZ+)w/o–(ΓImpZ+))/(ΓImpZ+)w/o (where (ΓImpZ+)/(ΓImpZ+)w/o denotes the impurity ion flux ratio with and without RMP), is observed, i.e. 30%–60% for heavy impurity (Fe, Cu, Mo, W), and ∼27% for light impurity of C. In addition, the analysis of the decontamination effects of C and Fe impurities under four different RMP phase configurations shows that it may be related to the strength of the response of the plasma to RMP. These results enhance the understanding of impurity accumulation suppression by the n = 1 RMP field and demonstrate a candidate approach using RMP coils for W control in magnetic confinement devices.
Fil: Zhang, Wenmin. Chinese Academy of Sciences; República de China. University of Science and Technology of China; República de China
Fil: Zhang, Ling. Chinese Academy of Sciences; República de China
Fil: Cheng, Yunxin. Chinese Academy of Sciences; República de China
Fil: Morita, Shigeru. National Institute for Fusion Science; Japón
Fil: Sheng, Hui. Chinese Academy of Sciences; República de China
Fil: Mitnik, Dario Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Sun, Youwen. Chinese Academy of Sciences; República de China
Fil: Wang, Zhengxiong. Dalian University of Technology; China
Fil: Chu, Yuqi. University of California at Los Angeles; Estados Unidos
Fil: Hu, Ailan. Chinese Academy of Sciences; República de China
Fil: Jie, Yinxian. Chinese Academy of Sciences; República de China
Fil: Liu, Haiqing. Chinese Academy of Sciences; República de China
description High-Z impurity accumulation suppression and mitigation in core plasma is frequently observed in EAST edge localized mode mitigation experiments by using resonant magnetic perturbations (RMP) coils. To study the individual effects of the RMP field on impurity transport, based on high-performance extreme ultraviolet impurity spectroscopic diagnostics, the effect of the n = 1 (n is the toroidal mode number) RMP field on the behavior of intrinsic impurity ions at the plasma edge, e.g. He+, Li2+, C2+–C5+, O5+, Fe8+, Fe15+, Fe17+, Fe22+, Cu17+, Mo12+, Mo13+ and W27+, is analyzed for the first time in L-mode discharges. Based on the evaluation of the location of these impurity ions, it is found that with the increase in RMP current (IRMP), an impurity screening layer inside the last closed flux surface is formed, e.g. at ρ = 0.74–0.96, which is also the region that the RMP field affects. Outside this screening layer, the impurity ion flux of He+, Li2+, C2+, C3+, O5+, Fe8+, Mo12+ and Mo13+ ions increases gradually, while inside this screening layer, the impurity ion flux of C4+, C5+, Cu17+, W27+, Fe15+, Fe17+ and Fe22+ ions decreases gradually. When IRMP is higher than a threshold value, RMP field penetration occurs, accompanied with m/n = 2/1 mode locking, and the position of this screening layer moves to the plasma core region, i.e. ρ = 0.66–0.76, close to the q = 2 surface, and the opposite behavior of the impurity ion flux at two sides of the screening layer is strengthened dramatically. As a result, significant decontamination effects in the plasma core region, indicated by the factor of ((ΓImpZ+)w/o–(ΓImpZ+))/(ΓImpZ+)w/o (where (ΓImpZ+)/(ΓImpZ+)w/o denotes the impurity ion flux ratio with and without RMP), is observed, i.e. 30%–60% for heavy impurity (Fe, Cu, Mo, W), and ∼27% for light impurity of C. In addition, the analysis of the decontamination effects of C and Fe impurities under four different RMP phase configurations shows that it may be related to the strength of the response of the plasma to RMP. These results enhance the understanding of impurity accumulation suppression by the n = 1 RMP field and demonstrate a candidate approach using RMP coils for W control in magnetic confinement devices.
publishDate 2024
dc.date.none.fl_str_mv 2024-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/263029
Zhang, Wenmin; Zhang, Ling; Cheng, Yunxin; Morita, Shigeru; Sheng, Hui; et al.; First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma; International Atomic Energy Agency; Nuclear Fusion; 64; 8; 6-2024; 1-14
0029-5515
1741-4326
CONICET Digital
CONICET
url http://hdl.handle.net/11336/263029
identifier_str_mv Zhang, Wenmin; Zhang, Ling; Cheng, Yunxin; Morita, Shigeru; Sheng, Hui; et al.; First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma; International Atomic Energy Agency; Nuclear Fusion; 64; 8; 6-2024; 1-14
0029-5515
1741-4326
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1741-4326/ad4ef4
info:eu-repo/semantics/altIdentifier/doi/10.1088/1741-4326/ad4ef4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv International Atomic Energy Agency
publisher.none.fl_str_mv International Atomic Energy Agency
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083458472869888
score 13.22299