Effects of Earth's magnetic field variation on high frequency wave propagation in the ionosphere

Autores
Fagre, Mariano; Zossi, Bruno Santiago; Yiğit, Erdal; Amit, Hagay; Elias, Ana Georgina
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The ionosphere is an anisotropic, dispersive medium for the propagation of radio frequency electromagnetic waves due to the presence of the Earth?s intrinsic magnetic field and free charges. The detailed physics of electromagnetic wavepropagation through a plasma is more complex when it is embedded in a magnetic field. In particular, the ground range of waves reflecting in the ionosphere presents detectable magnetic field effects. Earth?s magnetic field varies greatly, with the most drastic scenario being a polarity reversal. Here the spatial variability of the ground range is analyzed using numerical ray tracing under possible reversal scenarios. Pattern changes of the ?spitze?, a cusp in the ray path closely related to the geomagnetic field, are also assessed. The ground range increases with magnetic field intensity and ray alignment with the field direction. For the present field, which is almost axial dipolar, this happens for Northward propagation at the magnetic equator, peaking in Indonesia where the intensity is least weak along the equator. A similar situation occurs for a prevailing equatorial dipole with Eastward ray paths at the corresponding magnetic equator that here runs almost perpendicular to the geographic equator. Larger spitze angles occur for smaller magnetic inclinations, and higher intensities. This is clearly observed for the present field and the dipole rotation scenario along the corresponding magnetic equators. For less dipolar configurations the ground range and spitze spatial variabilities become smaller scale. Overall, studying ionospheric dynamics during a reversal may highlight possible effects of dipole decrease which is currently ongoing.
Fil: Fagre, Mariano. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Electricidad, Electrónica y Computación. Laboratorio de Telecomunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Zossi, Bruno Santiago. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Yiğit, Erdal. George Mason University; Estados Unidos
Fil: Amit, Hagay. Cnrs- S, Laboratoire de Planetologie Et de Geodyn; Francia
Fil: Elias, Ana Georgina. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Materia
RAY TRACING
IONOSPHERE
EARTH'S MAGNETIC FIELD
POLARITY REVERSAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/113782

id CONICETDig_22d310f24856cdf69e6d680606d1d05b
oai_identifier_str oai:ri.conicet.gov.ar:11336/113782
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effects of Earth's magnetic field variation on high frequency wave propagation in the ionosphereFagre, MarianoZossi, Bruno SantiagoYiğit, ErdalAmit, HagayElias, Ana GeorginaRAY TRACINGIONOSPHEREEARTH'S MAGNETIC FIELDPOLARITY REVERSALhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The ionosphere is an anisotropic, dispersive medium for the propagation of radio frequency electromagnetic waves due to the presence of the Earth?s intrinsic magnetic field and free charges. The detailed physics of electromagnetic wavepropagation through a plasma is more complex when it is embedded in a magnetic field. In particular, the ground range of waves reflecting in the ionosphere presents detectable magnetic field effects. Earth?s magnetic field varies greatly, with the most drastic scenario being a polarity reversal. Here the spatial variability of the ground range is analyzed using numerical ray tracing under possible reversal scenarios. Pattern changes of the ?spitze?, a cusp in the ray path closely related to the geomagnetic field, are also assessed. The ground range increases with magnetic field intensity and ray alignment with the field direction. For the present field, which is almost axial dipolar, this happens for Northward propagation at the magnetic equator, peaking in Indonesia where the intensity is least weak along the equator. A similar situation occurs for a prevailing equatorial dipole with Eastward ray paths at the corresponding magnetic equator that here runs almost perpendicular to the geographic equator. Larger spitze angles occur for smaller magnetic inclinations, and higher intensities. This is clearly observed for the present field and the dipole rotation scenario along the corresponding magnetic equators. For less dipolar configurations the ground range and spitze spatial variabilities become smaller scale. Overall, studying ionospheric dynamics during a reversal may highlight possible effects of dipole decrease which is currently ongoing.Fil: Fagre, Mariano. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Electricidad, Electrónica y Computación. Laboratorio de Telecomunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Zossi, Bruno Santiago. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Yiğit, Erdal. George Mason University; Estados UnidosFil: Amit, Hagay. Cnrs- S, Laboratoire de Planetologie Et de Geodyn; FranciaFil: Elias, Ana Georgina. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaEuropean Geosciences Union2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113782Fagre, Mariano; Zossi, Bruno Santiago; Yiğit, Erdal; Amit, Hagay; Elias, Ana Georgina; Effects of Earth's magnetic field variation on high frequency wave propagation in the ionosphere; European Geosciences Union; Annales Geophysicae Discussions; 2-2019; 1-232568-6402CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://angeo.copernicus.org/preprints/angeo-2019-27/angeo-2019-27.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.5194/angeo-2019-27info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:42Zoai:ri.conicet.gov.ar:11336/113782instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:42.859CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effects of Earth's magnetic field variation on high frequency wave propagation in the ionosphere
title Effects of Earth's magnetic field variation on high frequency wave propagation in the ionosphere
spellingShingle Effects of Earth's magnetic field variation on high frequency wave propagation in the ionosphere
Fagre, Mariano
RAY TRACING
IONOSPHERE
EARTH'S MAGNETIC FIELD
POLARITY REVERSAL
title_short Effects of Earth's magnetic field variation on high frequency wave propagation in the ionosphere
title_full Effects of Earth's magnetic field variation on high frequency wave propagation in the ionosphere
title_fullStr Effects of Earth's magnetic field variation on high frequency wave propagation in the ionosphere
title_full_unstemmed Effects of Earth's magnetic field variation on high frequency wave propagation in the ionosphere
title_sort Effects of Earth's magnetic field variation on high frequency wave propagation in the ionosphere
dc.creator.none.fl_str_mv Fagre, Mariano
Zossi, Bruno Santiago
Yiğit, Erdal
Amit, Hagay
Elias, Ana Georgina
author Fagre, Mariano
author_facet Fagre, Mariano
Zossi, Bruno Santiago
Yiğit, Erdal
Amit, Hagay
Elias, Ana Georgina
author_role author
author2 Zossi, Bruno Santiago
Yiğit, Erdal
Amit, Hagay
Elias, Ana Georgina
author2_role author
author
author
author
dc.subject.none.fl_str_mv RAY TRACING
IONOSPHERE
EARTH'S MAGNETIC FIELD
POLARITY REVERSAL
topic RAY TRACING
IONOSPHERE
EARTH'S MAGNETIC FIELD
POLARITY REVERSAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The ionosphere is an anisotropic, dispersive medium for the propagation of radio frequency electromagnetic waves due to the presence of the Earth?s intrinsic magnetic field and free charges. The detailed physics of electromagnetic wavepropagation through a plasma is more complex when it is embedded in a magnetic field. In particular, the ground range of waves reflecting in the ionosphere presents detectable magnetic field effects. Earth?s magnetic field varies greatly, with the most drastic scenario being a polarity reversal. Here the spatial variability of the ground range is analyzed using numerical ray tracing under possible reversal scenarios. Pattern changes of the ?spitze?, a cusp in the ray path closely related to the geomagnetic field, are also assessed. The ground range increases with magnetic field intensity and ray alignment with the field direction. For the present field, which is almost axial dipolar, this happens for Northward propagation at the magnetic equator, peaking in Indonesia where the intensity is least weak along the equator. A similar situation occurs for a prevailing equatorial dipole with Eastward ray paths at the corresponding magnetic equator that here runs almost perpendicular to the geographic equator. Larger spitze angles occur for smaller magnetic inclinations, and higher intensities. This is clearly observed for the present field and the dipole rotation scenario along the corresponding magnetic equators. For less dipolar configurations the ground range and spitze spatial variabilities become smaller scale. Overall, studying ionospheric dynamics during a reversal may highlight possible effects of dipole decrease which is currently ongoing.
Fil: Fagre, Mariano. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Electricidad, Electrónica y Computación. Laboratorio de Telecomunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Zossi, Bruno Santiago. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
Fil: Yiğit, Erdal. George Mason University; Estados Unidos
Fil: Amit, Hagay. Cnrs- S, Laboratoire de Planetologie Et de Geodyn; Francia
Fil: Elias, Ana Georgina. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina
description The ionosphere is an anisotropic, dispersive medium for the propagation of radio frequency electromagnetic waves due to the presence of the Earth?s intrinsic magnetic field and free charges. The detailed physics of electromagnetic wavepropagation through a plasma is more complex when it is embedded in a magnetic field. In particular, the ground range of waves reflecting in the ionosphere presents detectable magnetic field effects. Earth?s magnetic field varies greatly, with the most drastic scenario being a polarity reversal. Here the spatial variability of the ground range is analyzed using numerical ray tracing under possible reversal scenarios. Pattern changes of the ?spitze?, a cusp in the ray path closely related to the geomagnetic field, are also assessed. The ground range increases with magnetic field intensity and ray alignment with the field direction. For the present field, which is almost axial dipolar, this happens for Northward propagation at the magnetic equator, peaking in Indonesia where the intensity is least weak along the equator. A similar situation occurs for a prevailing equatorial dipole with Eastward ray paths at the corresponding magnetic equator that here runs almost perpendicular to the geographic equator. Larger spitze angles occur for smaller magnetic inclinations, and higher intensities. This is clearly observed for the present field and the dipole rotation scenario along the corresponding magnetic equators. For less dipolar configurations the ground range and spitze spatial variabilities become smaller scale. Overall, studying ionospheric dynamics during a reversal may highlight possible effects of dipole decrease which is currently ongoing.
publishDate 2019
dc.date.none.fl_str_mv 2019-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/113782
Fagre, Mariano; Zossi, Bruno Santiago; Yiğit, Erdal; Amit, Hagay; Elias, Ana Georgina; Effects of Earth's magnetic field variation on high frequency wave propagation in the ionosphere; European Geosciences Union; Annales Geophysicae Discussions; 2-2019; 1-23
2568-6402
CONICET Digital
CONICET
url http://hdl.handle.net/11336/113782
identifier_str_mv Fagre, Mariano; Zossi, Bruno Santiago; Yiğit, Erdal; Amit, Hagay; Elias, Ana Georgina; Effects of Earth's magnetic field variation on high frequency wave propagation in the ionosphere; European Geosciences Union; Annales Geophysicae Discussions; 2-2019; 1-23
2568-6402
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://angeo.copernicus.org/preprints/angeo-2019-27/angeo-2019-27.pdf
info:eu-repo/semantics/altIdentifier/doi/10.5194/angeo-2019-27
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv European Geosciences Union
publisher.none.fl_str_mv European Geosciences Union
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613677627473920
score 13.070432