Shortest Path Algorithm for Obtaining Muscular Anthropometric Data from MRI
- Autores
- López Ibarra, Marco Antonio; Braidot, Ariel Andrés Antonio
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the process of generating image based subject specific musculoskeletal models and the simulation of rescaled generic musculoskeletal models, the accurate segmentation of the anatomical structures of interest from medical images determines the efficiency of the musculoskeletal system models. Efficiency is highly influenced by the image segmentation technique used. This paper presents a semi-automatic segmentation algorithm based on the Dijkstra's shortest path algorithm for obtaining the origin and insertion points, and muscle paths from a magnetic resonance image. This algorithm significantly reduces the processing time while retaining high levels of sensitivity and specificity for the structures to be segmented. Anthropometric parameters calculated from the results obtained with the proposed algorithm are comparable to the results published by other groups of researchers. These results could be used to create an anthropometric parameters database from healthy population and with gait abnormalities that can be used in the development and simulation of rescaled generic models. In addition, the shortest path algorithm proposed in this paper could be used by the medical experts as a training algorithm of model based segmentation algorithm that may reduce processing time even more.
Fil: López Ibarra, Marco Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
Fil: Braidot, Ariel Andrés Antonio. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina - Materia
-
Musculoskeletal Models
Mri
Dijkstra'S Shortest Path Algorithm - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/51471
Ver los metadatos del registro completo
id |
CONICETDig_2291fcfa1a23552b31b71e250a1fdc34 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/51471 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Shortest Path Algorithm for Obtaining Muscular Anthropometric Data from MRILópez Ibarra, Marco AntonioBraidot, Ariel Andrés AntonioMusculoskeletal ModelsMriDijkstra'S Shortest Path Algorithmhttps://purl.org/becyt/ford/3.5https://purl.org/becyt/ford/3In the process of generating image based subject specific musculoskeletal models and the simulation of rescaled generic musculoskeletal models, the accurate segmentation of the anatomical structures of interest from medical images determines the efficiency of the musculoskeletal system models. Efficiency is highly influenced by the image segmentation technique used. This paper presents a semi-automatic segmentation algorithm based on the Dijkstra's shortest path algorithm for obtaining the origin and insertion points, and muscle paths from a magnetic resonance image. This algorithm significantly reduces the processing time while retaining high levels of sensitivity and specificity for the structures to be segmented. Anthropometric parameters calculated from the results obtained with the proposed algorithm are comparable to the results published by other groups of researchers. These results could be used to create an anthropometric parameters database from healthy population and with gait abnormalities that can be used in the development and simulation of rescaled generic models. In addition, the shortest path algorithm proposed in this paper could be used by the medical experts as a training algorithm of model based segmentation algorithm that may reduce processing time even more.Fil: López Ibarra, Marco Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; ArgentinaFil: Braidot, Ariel Andrés Antonio. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; ArgentinaScientific & Academic Publishing2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51471López Ibarra, Marco Antonio; Braidot, Ariel Andrés Antonio; Shortest Path Algorithm for Obtaining Muscular Anthropometric Data from MRI; Scientific & Academic Publishing; American Journal of Biomedical Engineering; 5; 1; 3-2015; 15-232163-1050CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://article.sapub.org/10.5923.j.ajbe.20150501.03.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.5923/j.ajbe.20150501.03info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:32Zoai:ri.conicet.gov.ar:11336/51471instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:32.816CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Shortest Path Algorithm for Obtaining Muscular Anthropometric Data from MRI |
title |
Shortest Path Algorithm for Obtaining Muscular Anthropometric Data from MRI |
spellingShingle |
Shortest Path Algorithm for Obtaining Muscular Anthropometric Data from MRI López Ibarra, Marco Antonio Musculoskeletal Models Mri Dijkstra'S Shortest Path Algorithm |
title_short |
Shortest Path Algorithm for Obtaining Muscular Anthropometric Data from MRI |
title_full |
Shortest Path Algorithm for Obtaining Muscular Anthropometric Data from MRI |
title_fullStr |
Shortest Path Algorithm for Obtaining Muscular Anthropometric Data from MRI |
title_full_unstemmed |
Shortest Path Algorithm for Obtaining Muscular Anthropometric Data from MRI |
title_sort |
Shortest Path Algorithm for Obtaining Muscular Anthropometric Data from MRI |
dc.creator.none.fl_str_mv |
López Ibarra, Marco Antonio Braidot, Ariel Andrés Antonio |
author |
López Ibarra, Marco Antonio |
author_facet |
López Ibarra, Marco Antonio Braidot, Ariel Andrés Antonio |
author_role |
author |
author2 |
Braidot, Ariel Andrés Antonio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Musculoskeletal Models Mri Dijkstra'S Shortest Path Algorithm |
topic |
Musculoskeletal Models Mri Dijkstra'S Shortest Path Algorithm |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.5 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
In the process of generating image based subject specific musculoskeletal models and the simulation of rescaled generic musculoskeletal models, the accurate segmentation of the anatomical structures of interest from medical images determines the efficiency of the musculoskeletal system models. Efficiency is highly influenced by the image segmentation technique used. This paper presents a semi-automatic segmentation algorithm based on the Dijkstra's shortest path algorithm for obtaining the origin and insertion points, and muscle paths from a magnetic resonance image. This algorithm significantly reduces the processing time while retaining high levels of sensitivity and specificity for the structures to be segmented. Anthropometric parameters calculated from the results obtained with the proposed algorithm are comparable to the results published by other groups of researchers. These results could be used to create an anthropometric parameters database from healthy population and with gait abnormalities that can be used in the development and simulation of rescaled generic models. In addition, the shortest path algorithm proposed in this paper could be used by the medical experts as a training algorithm of model based segmentation algorithm that may reduce processing time even more. Fil: López Ibarra, Marco Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina Fil: Braidot, Ariel Andrés Antonio. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina |
description |
In the process of generating image based subject specific musculoskeletal models and the simulation of rescaled generic musculoskeletal models, the accurate segmentation of the anatomical structures of interest from medical images determines the efficiency of the musculoskeletal system models. Efficiency is highly influenced by the image segmentation technique used. This paper presents a semi-automatic segmentation algorithm based on the Dijkstra's shortest path algorithm for obtaining the origin and insertion points, and muscle paths from a magnetic resonance image. This algorithm significantly reduces the processing time while retaining high levels of sensitivity and specificity for the structures to be segmented. Anthropometric parameters calculated from the results obtained with the proposed algorithm are comparable to the results published by other groups of researchers. These results could be used to create an anthropometric parameters database from healthy population and with gait abnormalities that can be used in the development and simulation of rescaled generic models. In addition, the shortest path algorithm proposed in this paper could be used by the medical experts as a training algorithm of model based segmentation algorithm that may reduce processing time even more. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/51471 López Ibarra, Marco Antonio; Braidot, Ariel Andrés Antonio; Shortest Path Algorithm for Obtaining Muscular Anthropometric Data from MRI; Scientific & Academic Publishing; American Journal of Biomedical Engineering; 5; 1; 3-2015; 15-23 2163-1050 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/51471 |
identifier_str_mv |
López Ibarra, Marco Antonio; Braidot, Ariel Andrés Antonio; Shortest Path Algorithm for Obtaining Muscular Anthropometric Data from MRI; Scientific & Academic Publishing; American Journal of Biomedical Engineering; 5; 1; 3-2015; 15-23 2163-1050 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://article.sapub.org/10.5923.j.ajbe.20150501.03.html info:eu-repo/semantics/altIdentifier/doi/10.5923/j.ajbe.20150501.03 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Scientific & Academic Publishing |
publisher.none.fl_str_mv |
Scientific & Academic Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268979344703488 |
score |
13.13397 |